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Perform parallel computations on multicore computers, GPUs, and computer
clusters

Parallel Computing Toolbox lets you solve computationally and data-intensive problems
using multicore processors, GPUs, and computer clusters. High-level constructs—parallel
for-loops, special array types, and parallelized numerical algorithms—enable you to
parallelize MATLAB® applications without CUDA or MPI programming. The toolbox lets
you use parallel-enabled functions in MATLAB and other toolboxes. You can use the
toolbox with Simulink® to run multiple simulations of a model in parallel. Programs and
models can run in both interactive and batch modes.

The toolbox lets you use the full processing power of multicore desktops by executing
applications on workers (MATLAB computational engines) that run locally. Without
changing the code, you can run the same applications on clusters or clouds (using
MATLAB Parallel Server™). You can also use the toolbox with MATLAB Parallel Server to
execute matrix calculations that are too large to fit into the memory of a single machine.



Parallel Computing Support in MathWorks Products

Parallel Computing Support in MathWorks Products

Parallel Computing Toolbox provides you with tools for a local cluster of workers on your
client machine. MATLAB Parallel Server software allows you to run as many MATLAB
workers on a remote cluster of computers as your licensing allows.

Most MathWorks products enable you to run applications in parallel. For example,
Simulink models can run simultaneously in parallel, as described in “Run Multiple
Simulations” (Simulink). MATLAB Compiler™ and MATLAB Compiler SDK™ software let
you build and deploy parallel applications; for example, see the “Parallel Computing”
section of MATLAB Compiler “Standalone Applications” (MATLAB Compiler).

Several MathWorks products now offer built-in support for the parallel computing
products, without requiring extra coding. For the current list of these products and their
parallel functionality, see:

https://www.mathworks.com/products/parallel-computing/parallel-support.html
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Create and Use Distributed Arrays
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In this section...

“Creating Distributed Arrays” on page 1-4

“Creating Codistributed Arrays” on page 1-5

If your data is currently in the memory of your local machine, you can use the
distributed function to distribute an existing array from the client workspace to the
workers of a parallel pool. Distributed arrays use the combined memory of multiple
workers in a parallel pool to store the elements of an array. For alternative ways of
partitioning data, see “Distributing Arrays to Parallel Workers” on page 3-13.You can use
distributed arrays to scale up your big data computation. Consider distributed
arrays when you have access to a cluster, as you can combine the memory of multiple
machines in your cluster.

A distributed array is a single variable, split over multiple workers in your parallel
pool. You can work with this variable as one single entity, without having to worry about
its distributed nature. Explore the functionalities available for distributed arrays in the
Parallel Computing Toolbox: “Run MATLAB Functions with Distributed Arrays” on page 5-
24,

When you create a distributed array, you cannot control the details of the distribution.
On the other hand, codistributed arrays allow you to control all aspects of
distribution, including dimensions and partitions. In the following, you learn how to
create both distributed and codistributed arrays.

Creating Distributed Arrays

You can create a distributed array in different ways:

* Use the distributed function to distribute an existing array from the client
workspace to the workers of a parallel pool.

* You can directly construct a distributed array on the workers. You do not need to first
create the array in the client, so that client workspace memory requirements are
reduced. The functions available include eye(  , 'distributed'),
rand(__ ,‘'distributed'), etc. For a full list, see the distributed object
reference page.



Create and Use Distributed Arrays

* Create a codistributed array inside an spmd statement, see “Single Program
Multiple Data (spmd)” on page 1-16. Then access it as a distributed array outside
the spmd statement. This lets you use distribution schemes other than the default.

In this example, you create an array in the client workspace, then turn it into a
distributed array:

parpool('local',k4) Create pool

A = magic(4); % Create magic 4-by-4 matrix

B = distributed(A); % Distribute to the workers

B % View results in client.

whos % B is a distributed array here.
delete(gcp) % Stop pool

You have createdB as a distributed array, split over the workers in your parallel pool.
This is shown in the figure.

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Creating Codistributed Arrays

Unlike distributed arrays, codistributed arrays allow you to control all aspects of
distribution, including dimensions and partitions. You can create a codistributed array
in different ways:

» “Partitioning a Larger Array” on page 5-7 — Start with a large array that is
replicated on all workers, and partition it so that the pieces are distributed across the
workers. This is most useful when you have sufficient memory to store the initial
replicated array.

* “Building from Smaller Arrays” on page 5-8 — Start with smaller replicated arrays
stored on each worker, and combine them so that each array becomes a segment of a

1-5



1 Getting Started

1-6

larger codistributed array. This method reduces memory requirements as it lets you
build a codistributed array from smaller pieces.

* “Using MATLAB Constructor Functions” on page 5-9 — Use any of the MATLAB
constructor functions like rand or zeros with a codistributor object argument. These
functions offer a quick means of constructing a codistributed array of any size in just
one step.

In this example, you create a codistributed array inside an spmd statement, using a
nondefault distribution scheme. First, define 1-D distribution along the third dimension,
with 4 parts on worker 1, and 12 parts on worker 2. Then create a 3-by-3-by-16 array of
Zeros.

parpool('local',2) % Create pool

spmd
codist = codistributorld(3,[4,12]);
Z = zeros(3,3,16,codist);

Z = Z + labindex;

end

pA % View results in client.

whos % Z 1s a distributed array here.
delete(gcp) % Stop pool

For more details on codistributed arrays, see “Working with Codistributed Arrays” on
page 5-5.

See Also

Related Examples

. “Distributing Arrays to Parallel Workers” on page 3-13

. “Big Data Workflow Using Tall Arrays and Datastores” on page 6-58
. “Single Program Multiple Data (spmd)” on page 1-16



Determine Product Installation and Versions

Determine Product Installation and Versions

To determine if Parallel Computing Toolbox software is installed on your system, type this
command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the version of
MATLAB you are running, including a list of all toolboxes installed on your system and
their version numbers.

If you want to run your applications on a cluster, see your system administrator to verify

that the version of Parallel Computing Toolbox you are using is the same as the version of
MATLAB Parallel Server installed on your cluster.
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Interactively Run a Loop in Parallel Using parfor

In this example, you start with a slow for-loop, and you speed up the calculation using a
parfor-loop instead. parfor splits the execution of for-loop iterations over the workers
in a parallel pool.

MATLAB®
workers

parfor

1\
1\

dlient

4\

This example calculates the spectral radius of a matrix and converts a Tfor-loop into a
parfor-loop. Find out how to measure the resulting speedup.

1 In the MATLAB Editor, enter the following for-loop. Add tic and toc to measure the
time elapsed.
tic
n
A

a
fo

200;

500;

zeros(n);

i=1:n

a(i) = max(abs(eig(rand(A))));
end

toc

2  Run the script, and note the elapsed time.

Sononn

Elapsed time is 31.935373 seconds.

3 In the script, replace the for-loop with a parfor-loop.
tic
n
A

200;
500;

1-8



Interactively Run a Loop in Parallel Using parfor

a = zeros(n);

parfor i 1:n

a(i) max(abs(eig(rand(A))));
end
toc

4 Run the new script, and run it again. Note that the first run is slower than the second
run, because the parallel pool takes some time to start and make the code available
to the workers. Note the elapsed time for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local
machine.

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 worke
Elapsed time is 10.760068 seconds.

The parfor run on four workers is about three times faster than the corresponding
for-loop run. The speed-up is smaller than the ideal speed-up of a factor of four on
four workers. This is due to parallel overhead, including the time required to transfer
data from the client to the workers and back. This example shows a good speed-up
with relatively small parallel overhead, and benefits from conversion into a parfor-
loop. Not all for-loop iterations can be turned into faster parfor-loops. To learn
more, see “Decide When to Use parfor” on page 2-2.

One key requirement for using parfor-loops is that the individual iterations must be
independent. Independent problems suitable for parfor processing include Monte Carlo
simulations and parameter sweeps. For next steps, see “Convert for-Loops Into parfor-
Loops” on page 2-8.

In this example, you managed to speed up the calculation by converting the for-loop into
a parfor-loop on four workers. You might reduce the elapsed time further by increasing
the number of workers in your parallel pool, see “Scale Up parfor-Loops to Cluster and
Cloud” on page 2-26.

You can modify your cluster profiles to control how many workers run your loops, and
whether the workers are local or on a cluster. For more information on profiles, see
“Discover Clusters and Use Cluster Profiles” on page 6-15.

Modify your parallel preferences to control whether a parallel pool is created

automatically, and how long it remains available before timing out. For more information
on preferences, see “Specify Your Parallel Preferences” on page 6-12.
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You can run Simulink models in parallel with the parsim command instead of using
parfor-loops. For more information and examples of using Simulink in parallel, see “Run
Multiple Simulations” (Simulink).

See Also

parfor | parpool | tic | toc

More About

. “Decide When to Use parfor” on page 2-2
. “Convert for-Loops Into parfor-Loops” on page 2-8
. “Scale Up parfor-Loops to Cluster and Cloud” on page 2-26
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Run Batch Parallel Jobs

Run a Batch Job

To offload work from your MATLAB session to run in the background in another session,
you can use the batch command inside a script.

1

To create the script, type:

edit mywave
In the MATLAB Editor, create a for-loop:
for 1 = 1:1024

A(i) = sin(i*2*pi/1024);
end

Save the file and close the Editor.

Use the batch command in the MATLAB Command Window to run your script on a
separate MATLAB worker:

job = batch('mywave')

MATLAB® MATLAB®
client worker

 — — 4

The batch command does not block MATLAB, so you must wait for the job to finish
before you can retrieve and view its results:

wait(job)

The load command transfers variables created on the worker to the client
workspace, where you can view the results:

load(job, 'A")

plot(A)

When the job is complete, permanently delete its data and remove its reference from
the workspace:

delete(job)
clear job

1-11
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batch runs your code on a local worker or a cluster worker, but does not require a
parallel pool.

You can use batch to run either scripts or functions. For more details, see the batch
reference page.

Run a Batch Job with a Parallel Pool

You can combine the abilities to offload a job and run a loop in a parallel pool. This
example combines the two to create a simple batch parfor-loop.

1

To create a script, type:

edit mywave
In the MATLAB Editor, create a parfor-loop:

parfor i = 1:1024
A(i) = sin(i*2*pi/1024);
end

Save the file and close the Editor.

Run the script in MATLAB with the batch command. Indicate that the script should
use a parallel pool for the loop:

job = batch('mywave', 'Pool',3)

This command specifies that three workers (in addition to the one running the batch
script) are to evaluate the loop iterations. Therefore, this example uses a total of four
local workers, including the one worker running the batch script. Altogether, there
are five MATLAB sessions involved, as shown in the following diagram.
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MATLAB® MATLAB®
client workers

‘\ batch
- > & -

parfor

|
2 2

To view the results:

wait(job)
load(job, 'A")
plot(A)

The results look the same as before, however, there are two important differences in
execution:

* The work of defining the parfor-loop and accumulating its results are offloaded
to another MATLAB session by batch.

* The loop iterations are distributed from one MATLAB worker to another set of
workers running simultaneously (' Pool' and parfor), so the loop might run
faster than having only one worker execute it.

When the job is complete, permanently delete its data and remove its reference from
the workspace:

delete(job)
clear job

1-13
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See Also
batch
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Run Script as Batch Job from the Current Folder Browser

From the Current Folder browser, you can run a MATLAB script as a batch job by
browsing to the file’s folder, right-clicking the file, and selecting Run Script as Batch
Job. The batch job runs on the cluster identified by the default cluster profile. The
following figure shows the menu option to run the script file scriptl.m:

View Help F1

Show in Explorer ]f
N S— K’—"‘\_)"‘*W""k '..\J"\

Running a script as a batch from the browser uses only one worker from the cluster. So
even if the script contains a parfor loop or spmd block, it does not open an additional
pool of workers on the cluster. These code blocks execute on the single worker used for
the batch job. If your batch script requires opening an additional pool of workers, you can
run it from the command line, as described in “Run a Batch Job with a Parallel Pool” on
page 1-12.

When you run a batch job from the browser, this also opens the Job Monitor. The Job
Monitor is a tool that lets you track your job in the scheduler queue. For more information
about the Job Monitor and its capabilities, see “Job Monitor” on page 6-32.
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Distribute Arrays and Run SPMD
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Distributed Arrays

The workers in a parallel pool communicate with each other, so you can distribute an
array among the workers. Each worker contains part of the array, and all the workers are
aware of which portion of the array each worker has.

Use the distributed function to distribute an array among the workers:

M = magic(4) % a 4-by-4 magic square in the client workspace
MM = distributed(M)

Now MM is a distributed array, equivalent to M, and you can manipulate or access its
elements in the same way as any other array.

M2 = 2*MM;

M2 is also distributed, calculation performed on workers
x = M2(1,1) X

on the client is set to first element of M2

)
©
)

o

Single Program Multiple Data (spmd)

The single program multiple data (spmd) construct lets you define a block of code that
runs in parallel on all the workers in a parallel pool. The spmd block can run on some or
all the workers in the pool.

spmd % By default creates pool and uses all workers
R = rand(4);
end

This code creates an individual 4-by-4 matrix, R, of random numbers on each worker in
the pool.

Composites

Following an spmd statement, in the client context, the values from the block are
accessible, even though the data is actually stored on the workers. On the client, these
variables are called Composite objects. Each element of a composite is a symbol
referencing the value (data) on a worker in the pool. Note that because a variable might
not be defined on every worker, a Composite might have undefined elements.
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Continuing with the example from above, on the client, the Composite R has one element
for each worker:

X = R{3}; % Set X to the value of R from worker 3.

The line above retrieves the data from worker 3 to assign the value of X. The following
code sends data to worker 3:

X=X+ 2;
R{3} = X; % Send the value of X from the client to worker 3.

If the parallel pool remains open between spmd statements and the same workers are
used, the data on each worker persists from one spmd statement to another.

spmd
R = R + labindex % Use values of R from previous spmd.
end

A typical use for spmd is to run the same code on a number of workers, each of which
accesses a different set of data. For example:

spmd
INP
RES

load(['somedatafile' num2str(labindex) '.mat'l]);
somefun (INP)

end

Then the values of RES on the workers are accessible from the client as RES{1} from
worker 1, RES{2} from worker 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell array:

* AA{n} returns the values of AA from worker n.

* AA(n) returns a cell array of the content of AA from worker n.

Although data persists on the workers from one spmd block to another as long as the
parallel pool remains open, data does not persist from one instance of a parallel pool to

another. That is, if the pool is deleted and a new one created, all data from the first pool is
lost.

For more information about using distributed arrays, spmd, and Composites, see
“Distributed Arrays”.
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Parallel computing allows you to carry out many calculations simultaneously. Large
problems can often be split into smaller ones, which are then solved at the same time.

The main reasons to consider parallel computing are to

» Save time by distributing tasks and executing these simultaneously

* Solve big data problems by distributing data

+ Take advantage of your desktop computer resources and scale up to clusters and cloud
computing

With Parallel Computing Toolbox, you can

» Accelerate your code using interactive parallel computing tools, such as parfor and
parfeval

* Scale up your computation using interactive Big Data processing tools, such as
distributed, tall, datastore, and mapreduce

* Use gpuArray to speed up your calculation on the GPU of your computer

* Use batch to offload your calculation to computer clusters or cloud computing
facilities

Here are some useful Parallel Computing concepts:

* CPU: Central Processing Unit, comprising multiple cores or processors

* GPU: Graphics Processing Unit, now widely used for general purpose (GP) GPU
computing

* Node: standalone computer, containing one or more CPUs / GPUs. Nodes are
networked to form a cluster or supercomputer

* Thread: smallest set of instructions that can be managed independently by a
scheduler. On a GPU, multiprocessor or multicore system, multiple threads can be
executed simultaneously (multi-threading)

* Batch: off-load execution of a functional script to run in the background
* Scalability: increase in parallel speedup with the addition of more resources

What tools do MATLAB and Parallel Computing Toolbox offer?



See Also

MATLAB workers: MATLAB computational engines for parallel computing, associated
with the cores in a multicore machine

Parallel pool: a parallel pool of MATLAB workers can be created using parpool

Speed up: Accelerate your code by running on multiple MATLAB workers, using
parfor and parfeval

Scale up: Partition your big data across multiple MATLAB workers, using
distributed arrays and mapreduce

Asynchronous processing: Use parfeval to execute a computing task without waiting
for it to complete

See Also

Related Examples

“Choose a Parallel Computing Solution” on page 1-20

“Identify and Select a GPU Device” on page 9-22

“Decide When to Use parfor” on page 2-2

“Run Single Programs on Multiple Data Sets” on page 3-2

“Evaluate Functions in the Background Using parfeval” on page 1-27
“Distributing Arrays to Parallel Workers” on page 3-13

“Run Batch Parallel Jobs” on page 1-11
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Process your data faster or scale up your big data computation using the capabilities of
MATLAB, Parallel Computing Toolbox and MATLAB Parallel Server.

Parallel Computing
Toolbox

Problem Solutions Required More Information
Products
Do you want | Profile your code. MATLAB “Profile to Improve
to process Performance” (MATLAB)
%’;Sutggata Vectorize your code. MATLAB “Vectorization” (MATLAB)
. Use automatic parallel |MATLAB “Run MATLAB Functions
computing support in _ with Automatic Parallel
MathWorks products. ~|Parallel Computing | Support” on page 1-24
Toolbox
If you have a GPU, try |MATLAB “Run MATLAB Functions on
gpuArray. a GPU” on page 9-11
Parallel Computing
Toolbox
Use parfor. MATLAB “Interactively Run a Loop in
Parallel Using parfor” on
Parallel Computing |page 1-8
Toolbox
Are you Try parfeval. MATLAB “Evaluate Functions in the
looking for . Background Using parfeval”
other ways Parallel Computing |on page 1-27
to Speed up Toolbox
o Try spmd. MATLAB “Run Single Programs on
processing? Multiple Data Sets” on page

3-2
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Problem Solutions Required More Information
Products
Do you want | To work with out-of- MATLAB “Big Data Workflow Using
to scale up |memory data with any Tall Arrays and Datastores”
your big number of rows, use tall on page 6-58
data arrays.
calculation?
This workflow is well
suited to data analytics
and machine learning.
Use tall arrays in MATLAB “Use Tall Arrays on a Parallel
parallel on your local Pool” on page 6-61
machine. Parallel Computing
Toolbox
Use tall arrays in MATLAB “Use Tall Arrays on a Spark
parallel on your cluster. Enabled Hadoop Cluster” on
Parallel Computing |page 6-65
Toolbox
MATLAB Parallel
Server
If your data is large in |MATLAB “Run MATLAB Functions
multiple dimensions, with Distributed Arrays” on
use distributed Parallel Computing |page 5-24
instead. Toolbox
This workflow is well ~ |MATLAB Parallel
suited to linear algebra |Server
problems.
Do you want|Use batch to run your |MATLAB Parallel |“Run Batch Parallel Jobs” on
to offload to |code on clusters and Server page 1-11
a cluster? |clouds.
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Do you want to
process your data
faster or do you have
big data?

BIG DATA?

data fit in the
memory of your local
machine or

gpuArray

distributed
arrays

tall
arrays

Do you want to
offload to
cluster or cloud?

batch




See Also

See Also

Related Examples

“Profile to Improve Performance” (MATLAB)

“Vectorization” (MATLAB)

Built-in Parallel Computing Support

“Identify and Select a GPU Device” on page 9-22

“Interactively Run a Loop in Parallel Using parfor” on page 1-8
“Evaluate Functions in the Background Using parfeval” on page 1-27
“Run Single Programs on Multiple Data Sets” on page 3-2

“Big Data Workflow Using Tall Arrays and Datastores” on page 6-58
“Use Tall Arrays on a Parallel Pool” on page 6-61

“Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 6-65
“Distributing Arrays to Parallel Workers” on page 3-13

“Run Batch Parallel Jobs” on page 1-11

1-23


https://www.mathworks.com/products/parallel-computing/parallel-support.html

1 Getting Started

Run MATLAB Functions with Automatic Parallel Support
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Several MATLAB and Simulink products have a growing number of functions and features
that help you take advantage of parallel computing resources without requiring any extra
coding. You can enable this support by simply setting a flag or preference.

To take advantage of this functionality on your desktop, you need Parallel Computing
Toolbox. Run calculations in parallel using local workers to speed up large calculations.
To scale the parallel computing to larger resources such as computer clusters, you also
need MATLAB Parallel Server.

* Some functions run automatically in parallel by default. For example, parfor,
parsim, and tall.

* Many other functions run automatically in parallel if you set an option to use parallel.

When you run a function with parallel enabled, MATLAB automatically opens a parallel
pool of workers. MATLAB runs the computation across the available workers.

Automatic parallel support starts a parallel pool of workers using the default cluster
profile. If you have not touched your parallel preferences, the default profile is local.
Control parallel behavior with the parallel preferences, including scaling up to a cluster,
automatic pool creation, and preferred number of workers.

Find Automatic Parallel Support

* On function pages, find information under Extended Capabilities.

* To browse supported functions by product, click the Functions tab, select a product,
and select the check box Automatic Parallel Support. If you select a product that
does not have functions with automatic parallel support, then the Automatic Parallel
Support filter is not available.

If a function you are interested in does not include automatic parallel support, there are
the alternatives:

» If you have a GPU, many MATLAB functions run automatically on a GPU. See “Run
MATLAB Functions on a GPU” on page 9-11.

* Any MATLAB code inside a for-loop can be made into a parallel for loop, provided the
iterations are independent. See parfor.


https://uk.mathworks.com/products/matlab.html
https://uk.mathworks.com/products/simulink.html
https://uk.mathworks.com/products/parallel-computing.html
https://uk.mathworks.com/products/parallel-computing.html
https://uk.mathworks.com/products/matlab-parallel-server.html

See Also

» Ifyou are you looking for other ways to speed up your processing or to scale up your
big data calculation, see “Choose a Parallel Computing Solution” on page 1-20.

See Also

Related Examples

. “Specify Your Parallel Preferences” on page 6-12

. “Run Code on Parallel Pools” on page 2-71

. “Scale up from Desktop to Cluster”

More About

. “Run MATLAB Functions on a GPU” on page 9-11

. “Parallel for-Loops (parfor)”

. “Choose a Parallel Computing Solution” on page 1-20
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Run Non-Blocking Code in Parallel Using parfeval

1-26

You can execute a function on one or all parallel pool workers, without waiting for it to
complete, using parfeval or parfevalOnAll. This can be useful if you want to be able
to plot intermediate results. In addition, parfeval allows you to break out of a loop early,
if you have established that your results are good enough. This may be convenient in e.g.
optimization procedures. Note that this is different from using parfor, where you have to
wait for the loop to complete.



Evaluate Functions in the Background Using parfeval

Evaluate Functions in the Background Using parfeval

This example shows how you can use parfeval to evaluate a function in the background
and to collect results as they become available. In this example, you submit a vector of
multiple future requests in a for-loop and retrieve the individual future outputs as they
become available.

p = gcp();
% To request multiple evaluations, use a loop.
for idx = 1:10
f(idx) = parfeval(p,@magic,1,idx); % Square size determined by idx
end
% Collect the results as they become available.
magicResults = cell(1,10);
for idx = 1:10
% fetchNext blocks until next results are available.
[completedIdx,value] = fetchNext(f);
magicResults{completedIdx} = value;
fprintf('Got result with index: %d.\n', completedIdx);
end

Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:
Got result with index:

HFOoO~NOOULEE WN -

See Also

Related Examples
. “Parfeval Blackjack”
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* “Decide When to Use parfor” on page 2-2

* “Convert for-Loops Into parfor-Loops” on page 2-8

* “Ensure That parfor-Loop Iterations are Independent” on page 2-12

* “Nested parfor and for-Loops and Other parfor Requirements” on page 2-15
* “Scale Up parfor-Loops to Cluster and Cloud” on page 2-26

» “Use parfor-Loops for Reduction Assignments” on page 2-31

* “Use Objects and Handles in parfor-Loops” on page 2-33

* “Troubleshoot Variables in parfor-Loops” on page 2-35

* “Loop Variables” on page 2-42

+ “Sliced Variables” on page 2-44

* “Broadcast Variables” on page 2-49

* “Reduction Variables” on page 2-50

* “Temporary Variables” on page 2-59

* “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-62
* “Improve parfor Performance” on page 2-65

* “Run Code on Parallel Pools” on page 2-71

* “Repeat Random Numbers in parfor-Loops” on page 2-77
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In this section...

“parfor-Loops in MATLAB” on page 2-2
“Deciding When to Use parfor” on page 2-2
“Example of parfor With Low Parallel Overhead” on page 2-3

“Example of parfor With High Parallel Overhead” on page 2-6

parfor-Loops in MATLAB

A parfor-loop in MATLAB executes a series of statements in the loop body in parallel.
The MATLAB client issues the parfor command and coordinates with MATLAB workers
to execute the loop iterations in parallel on the workers in a parallel pool. The client
sends the necessary data on which parfor operates to workers, where most of the
computation is executed. The results are sent back to the client and assembled.

A parfor-loop can provide significantly better performance than its analogous for-loop,
because several MATLAB workers can compute simultaneously on the same loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB workers evaluate
iterations in no particular order and independently of each other. Because each iteration
is independent, there is no guarantee that the iterations are synchronized in any way, nor
is there any need for this. If the number of workers is equal to the number of loop
iterations, each worker performs one iteration of the loop. If there are more iterations
than workers, some workers perform more than one loop iteration; in this case, a worker
might receive multiple iterations at once to reduce communication time.

Deciding When to Use parfor

A parfor-loop can be useful if you have a slow for-loop. Consider parfor if you have:

* Some loop iterations that take a long time to execute. In this case, the workers can
execute the long iterations simultaneously. Make sure that the number of iterations
exceeds the number of workers. Otherwise, you will not use all workers available.

* Many loop iterations of a simple calculation, such as a Monte Carlo simulation or a
parameter sweep. parfor divides the loop iterations into groups so that each worker
executes some portion of the total number of iterations.
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A parfor-loop might not be useful if you have:

* Code that has vectorized out the for-loops. Generally, if you want to make code run
faster, first try to vectorize it. For details how to do this, see “Vectorization”
(MATLAB). Vectorizing code allows you to benefit from the built-in parallelism
provided by the multithreaded nature of many of the underlying MATLAB libraries.
However, if you have vectorized code and you have access only to local workers, then
parfor-loops may run slower than for-loops. Do not devectorize code to allow for
parfor; in general, this solution does not work well.

» Loop iterations that take a short time to execute. In this case, parallel overhead
dominates your calculation.

You cannot use a parfor-loop when an iteration in your loop depends on the results of
other iterations. Each iteration must be independent of all others. For help dealing with
independent loops, see “Ensure That parfor-Loop Iterations are Independent” on page 2-
12. The exception to this rule is to accumulate values in a loop using “Reduction
Variables” on page 2-50.

In deciding when to use parfor, consider parallel overhead. Parallel overhead includes
the time required for communication, coordination and data transfer — sending and
receiving data — from client to workers and back. If iteration evaluations are fast, this
overhead could be a significant part of the total time. Consider two different types of loop
iterations:

» for-loops with a computationally demanding task. These loops are generally good
candidates for conversion into a parfor-loop, because the time needed for
computation dominates the time required for data transfer.

» for-loops with a simple computational task. These loops generally do not benefit from
conversion into a parfor-loop, because the time needed for data transfer is
significant compared with the time needed for computation.

Example of parfor With Low Parallel Overhead
In this example, you start with a computationally demanding task inside a for-loop. The

for-loops are slow, and you speed up the calculation using parfor-loops instead. parfor
splits the execution of for-loop iterations over the workers in a parallel pool.

2-3
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MATLAB®
workers

parfor

MATLAB®
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This example calculates the spectral radius of a matrix and converts a Tor-loop into a
parfor-loop. Find out how to measure the resulting speedup and how much data is
transferred to and from the workers in the parallel pool.

1 Inthe MATLAB Editor, enter the following for-loop. Add tic and toc to measure the
computation time.

tic
n = 200;
A = 500;
a = zeros(n);
for i = 1:n
a(i) = max(abs(eig(rand(A))));
end
toc

2 Run the script, and note the elapsed time.

Elapsed time is 31.935373 seconds.

3 In the script, replace the for-loop with a parfor-loop. Add ticBytes and
tocBytes to measure how much data is transferred to and from the workers in the
parallel pool.

tic
ticBytes(gcp);
n = 200;

A = 500;

a zeros(n);
parfor i = 1:n
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a(i) = max(abs(eig(rand(A))));
end
tocBytes(gcp)
toc

4 Run the new script on four workers, and run it again. Note that the first run is slower
than the second run, because the parallel pool takes some time to start and make the
code available to the workers. Note the data transfer and elapsed time for the second
run.

By default, MATLAB automatically opens a parallel pool of workers on your local

machine.
Starting parallel pool (parpool) using the 'local' profile ... connected to 4 worke
BytesSentToWorkers BytesReceivedFromWorkers
1 15340 7024
2 13328 5712
3 13328 5704
4 13328 5728
Total 55324 24168

Elapsed time is 10.760068 seconds.

The parfor run on four workers is about three times faster than the corresponding
for-loop calculation. The speed-up is smaller than the ideal speed-up of a factor of
four on four workers. This is due to parallel overhead, including the time required to
transfer data from the client to the workers and back. Use the ticBytes and
tocBytes results to examine the amount of data transferred. Assume that the time
required for data transfer is proportional to the size of the data. This approximation
allows you to get an indication of the time required for data transfer, and to compare
your parallel overhead with other parfor-loop iterations. In this example, the data
transfer and parallel overhead are small in comparison with the next example.

The current example has a low parallel overhead and benefits from conversion into a
parfor-loop. Compare this example with the simple loop iteration in the next example,
see “Example of parfor With High Parallel Overhead” on page 2-6.

For another example of a parfor-loop with computationally demanding tasks, see
“Nested parfor and for-Loops and Other parfor Requirements” on page 2-15
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Example of parfor With High Parallel Overhead

In this example, you write a loop to create a simple sine wave. Replacing the for-loop
with a parfor-loop does not speed up your calculation. This loop does not have a lot of
iterations, it does not take long to execute and you do not notice an increase in execution
speed. This example has a high parallel overhead and does not benefit from conversion
into a parfor-loop.

1

Write a loop to create a sine wave. Use tic and toc to measure the time elapsed.

tic
n = 1024;
A = zeros(n);
for i = 1:n
A(i,:) = (1:n) .* sin(i*2*pi/1024);
end
toc

Elapsed time is 0.012501 seconds.

Replace the for-loop with a parfor-loop. Add ticBytes and tocBytes to measure
how much data is transferred to and from the workers in the parallel pool.

tic
ticBytes(gcp);
n = 1024;
A = zeros(n);
parfor (i = 1l:n)
A(i,:) = (1:n) .* sin(i*2*pi/1024);
end
tocBytes(gcp)
toc

Run the script on four workers and run the code again. Note that the first run is
slower than the second run, because the parallel pool takes some time to start and
make the code available to the workers. Note the data transfer and elapsed time for
the second run.

BytesSentToWorkers BytesReceivedFromWorkers
1 13176 2.0615e+06
2 15188 2.0874e+06
3 13176 2.4056e+06
4 13176 1.8567e+06



See Also

Total 54716 8.4112e+06
Elapsed time is 0.743855 seconds.

Note that the elapsed time is much smaller for the serial for-loop than for the
parfor-loop on four workers. In this case, you do not benefit from turning your for-
loop into a parfor-loop. The reason is that the transfer of data is much greater than
in the previous example, see “Example of parfor With Low Parallel Overhead” on
page 2-3. In the current example, the parallel overhead dominates the computing
time. Therefore the sine wave iteration does not benefit from conversion into a
parfor-loop.

This example illustrates why high parallel overhead calculations do not benefit from
conversion into a parfor-loop. To learn more about speeding up your code, see “Convert
for-Loops Into parfor-Loops” on page 2-8

See Also
parfor | ticBytes | tocBytes

Related Examples
. “Decide When to Use parfor” on page 2-2

. “Interactively Run a Loop in Parallel Using parfor” on page 1-8

. “Convert for-Loops Into parfor-Loops” on page 2-8

. “Ensure That parfor-Loop Iterations are Independent” on page 2-12

. “Nested parfor and for-Loops and Other parfor Requirements” on page 2-15

. “Scale Up parfor-Loops to Cluster and Cloud” on page 2-26
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In some cases, you must modify the code to convert for-loops to parfor-loops. This
example shows how to diagnose and fix parfor-loop problems using a simple nested for-
loop. Run this code in MATLAB and examine the results.

for x = 0:0.1:1

for k = 2:10
x(k) = x(k-1) + k;
end
X
end

To speed up the code, try to convert the for-loops to parfor-loops. Observe that this
code produces errors.

parfor x = 0:0.1:1
parfor k = 2:10
x(k) = x(k-1) + k;
end
X

end

In this case you cannot simply convert the for-loops to parfor-loops without
modification. To make this work, you must change the code in several places. To diagnose
the problems, look for Code Analyzer messages in the MATLAB Editor.



Convert for-Loops Into parfor-Loops

& PARFOR or SPMD cannot be used inside another PARFOR loop. [ Details = | [ Fix |

® The PARFOR loop cannot run due to the way variable 'x' is used. [ Fix ]

Explanation

MATLAE runs loops in parfor functions by dividing the loop iterations into groups,
and then sending them to MATLAB workers where they run in parallel. For MATLAB
to do this in a repeatable, reliable manner, it must be able to classify all the variables
used in the loop, The code uses the indicated variable in a way that is incormpatible
with classification.

Suggested Action
Fix the usage of the indicated variable,

For more information about variable classification and other restrictions on parfor
loop iterations, see Classification of Yariables in parfor-Locps in the Parallel
Computing Toclbox™ documentation,

This code shows common problems when you try to convert for-loops to parfor-loops.

Noninteger loop variable

Q

parfor x = 0:0.1:1

Nested parallel loops @ parfor y = 2:10
A 4
A(y) = A(y-1) +
end A4

Dependent loop body

end

To solve these problems, you must modify the code to use parfor. The body of the
parfor-loop is executed in a parallel pool using multiple MATLAB workers in a
nondeterministic order. Therefore, you have to meet these requirements for the body of
the parfor-loop:
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1 The body of the parfor-loop must be independent. One loop iteration cannot depend
on a previous iteration, because the iterations are executed in parallel in a
nondeterministic order. In the example,

x(k) = x(k-1) + k;

is not independent, and therefore you cannot use parfor. For next steps in dealing
with independence issues, see “Ensure That parfor-Loop Iterations are Independent”
on page 2-12.

2 You cannot nest a parfor-loop inside another parfor-loop. The example has two
nested for-loops, and therefore you can replace only one for-loop with a parfor-
loop. Instead, you can call a function that uses a parfor-loop inside the body of the
other parfor-loop. However, such nested parfor-loops give you no computational
benefit, because all workers are used to parallelize the outermost loop. For help
dealing with nested loops, see “Nested parfor and for-Loops and Other parfor
Requirements” on page 2-15.

3 parfor-loop variables must be consecutive increasing integers. In the example,
parfor x = 0:0.1:1

has non-integer loop variables, and therefore you cannot use parfor here. You can
solve this problem by changing the value of the loop variable to integer values
required by the algorithm. For next steps in troubleshooting parfor-loop variables,
see “Ensure That parfor-Loop Variables Are Consecutive Increasing Integers” on
page 2-35.

4  You cannot break out of a parfor-loop early, as you can in a for-loop. Do not include
a return or break statement in the body of your parfor-loop. Without
communication, the other MATLAB instances running the loop do not know when to
stop. As an alternative, consider parfeval.

If you still have problems converting for-loops to parfor-loops, see “Troubleshoot
Variables in parfor-Loops” on page 2-35.

Tip You can profile a parfor-loops using tic and toc to measure the speedup compared
to the corresponding for-loop. Use ticBytes and tocBytes to measure how much data
is transferred to and from the workers in the parallel pool. For more information and
examples, see “Profiling parfor-loops” on page 2-66.
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See Also
parfor | ticBytes | tocBytes

Related Examples
. “Decide When to Use parfor” on page 2-2

. “Ensure That parfor-Loop Iterations are Independent” on page 2-12
. “Nested parfor and for-Loops and Other parfor Requirements” on page 2-15
. “Troubleshoot Variables in parfor-Loops” on page 2-35
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Ensure That parfor-Loop Iterations are Independent

If you get an error when you convert for-loops to parfor-loops, ensure that your
parfor-loop iterations are independent. parfor-loop iterations have no guaranteed
order, while the iteration order in for-loops is sequential. Also parfor-loop iterations
are performed on different MATLAB workers in the parallel pool, so that there is no
sharing of information between iterations. Therefore one parfor-loop iteration must not
depend on the result of a previous iteration. The only exception to this rule is to
accumulate values in a loop using “Reduction Variables” on page 2-50.

The following example produces equivalent results, using a for-loop on the left and a
parfor-loop on the right. Try the example in your MATLAB Command Window:

clear A clear A
for i = 1:8 parfor i = 1:8
A(i) = i; A(i) = 1i;
end end
A A
A = A =
1 2 3 4 5 6 71 82 3 4 5 6

Each element of A is equal to its index. The parfor-loop works because each element is
determined by the indexed loop variable only and does not depend on other variables.
for-loops with independent tasks are ideal candidates for parfor-loops.

Note By default, parfor automatically starts a parallel pool of workers, if you have not
started one already. parfor creates a pool using your default cluster profile, if you have
set your parallel preferences accordingly.

In the example, the array elements are available in the client workspace after the
parfor-loop, exactly as with a for-loop.

Now use a nonindexed variable inside the loop, or a variable whose indexing does not
depend on the loop variable i. Try these examples, and note the values of d and i
afterward:
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clear A clear A
d=20; i=0; d=20; i=0;
for i = 1:4 parfor i = 1:4
d = i*2; d = i*2;
A(i) = d; A(i) = d;
end end
A A
d d
i i
A = A=
2 4 6 8 2 4 6 8
d = d =
8 0
i-= i=
4 0

Although the elements of A are the same in both examples, the value of d is not. In the
for-loop, the iterations are executed sequentially, so afterward d has the value it held in
the last iteration of the loop. In the parfor-loop, however, the iterations execute in
parallel, so it is impossible to assign d a defined value at the end of the loop. This
situation also applies to the loop variable i. Therefore, parfor-loop behavior is defined
so that it does not affect the values d and i outside the loop. Their values remain the
same before and after the loop. If the variables in your parfor-loop are not independent,
then you might get different answers from those in the for-loop. In summary, a parfor-
loop requires that each iteration be independent of the other iterations. All code that
follows the parfor statement should not depend on the loop iteration sequence.

Code Analyzer can help diagnose whether the loop iterations are dependent. The code in
the example shows iterations defined in terms of the previous iteration:

parfor k = 2:10

x(k) = x(k-1) + k;
end

Look for Code Analyzer messages in the MATLAB Editor. In this case, Code Analyzer
reports the dependency problem.
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& Line 2: In a PARFOR. loop, variable 'x' is indexed in different ways, potentially causing dependencies between iterations.

In other cases, however, Code Analyzer is unable to mark dependencies.

For help with other common parfor problems, see “Nested parfor and for-Loops and
Other parfor Requirements” on page 2-15.

See Also

parfor

Related Examples
. “Decide When to Use parfor” on page 2-2

. “Convert for-Loops Into parfor-Loops” on page 2-8
. “Nested parfor and for-Loops and Other parfor Requirements” on page 2-15
. “Troubleshoot Variables in parfor-Loops” on page 2-35

. “Reduction Variables” on page 2-50

More About

. “Evaluate Functions in the Background Using parfeval” on page 1-27
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Nested parfor and for-Loops and Other parfor Requirements

Nested parfor and for-Loops and Other parfor
Requirements

In this section...

“Nested parfor-Loops” on page 2-15
“Convert Nested for-Loops to parfor-Loops” on page 2-16
“Nested for-Loops: Requirements and Limitations” on page 2-19

“parfor-Loop Limitations” on page 2-22

Nested parfor-Loops

You cannot use a parfor-loop inside another parfor-loop. As an example, the following
nesting of parfor-loops is not allowed:

parfor i = 1:10
parfor j = 1:5

end
end

Tip You cannot nest parfor directly within another parfor-loop. A parfor-loop can call
a function that contains a parfor-loop, but you do not get any additional parallelism.

Code Analyzer in the MATLAB Editor flags the use of parfor inside another parfor-
loop:

&) PARFOR ar SPMD cannot be used inside another PARFOR loep.

You cannot nest parfor-loops because parallelization can be performed at only one level.
Therefore, choose which loop to run in parallel, and convert the other loop to a for-loop.

Consider the following performance issues when dealing with nested loops:

» Parallel processing incurs overhead. Generally, you should run the outer loop in
parallel, because overhead only occurs once. If you run the inner loop in parallel, then
each of the multiple parfor executions incurs an overhead. See “Convert Nested for-
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Loops to parfor-Loops” on page 2-16 for an example how to measure parallel
overhead.

* Make sure that the number of iterations exceeds the number of workers. Otherwise,
you do not use all available workers.

* Try to balance the parfor-loop iteration times. parfor tries to compensate for some
load imbalance.

Tip Always run the outermost loop in parallel, because you reduce parallel overhead.

You can also use a function that uses parfor and embed it in a parfor-loop.
Parallelization occurs only at the outer level. In the following example, call a function
MyFun.m inside the outer parfor-loop. The inner parfor-loop embedded in MyFun.m
runs sequentially, not in parallel.

parfor i = 1:10
MyFun (1)
end

function MyFun(1i)
parfor j = 1:5

end
end

Tip Nested parfor-loops generally give you no computational benefit.

Convert Nested for-Loops to parfor-Loops

A typical use of nested loops is to step through an array using a one-loop variable to index
one dimension, and a nested-loop variable to index another dimension. The basic form is:

X = zeros(n,m);
for a = 1:n
for b = 1:m
X(a,b) = fun(a,b)
end
end
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The following code shows a simple example. Use tic and toc to measure the computing
time needed.

A = 100;
tic
for i = 1:100
for j = 1:100
a(i,j) = max(abs(eig(rand(A))));
end
end
toc

Elapsed time is 49.376732 seconds.

You can parallelize either of the nested loops, but you cannot run both in parallel. The
reason is that the workers in a parallel pool cannot start or access further parallel pools.

If the loop counted by i is converted to a parfor-loop, then each worker in the pool
executes the nested loops using the j loop counter. The j loops themselves cannot run as
a parfor on each worker.

Because parallel processing incurs overhead, you must choose carefully whether you
want to convert either the inner or the outer for-loop to a parfor-loop. The following
example shows how to measure the parallel overhead.

First convert only the outer for-loop to a parfor-loop. Use tic and toc to measure the
computing time needed. Use ticBytes and tocBytes to measure how much data is
transferred to and from the workers in the parallel pool.

Run the new code, and run it again. The first run is slower than subsequent runs, because
the parallel pool takes some time to start and make the code available to the workers.

A = 100;
tic
ticBytes(gcp);
parfor i = 1:100
for j = 1:100
a(i,j) = max(abs(eig(rand(A))));
end
end
tocBytes(gcp)
toc

BytesSentToWorkers BytesReceivedFromWorkers
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1 32984 24512
2 33784 25312
3 33784 25312
4 34584 26112
Total 1.3514e+05 1.0125e+05

Elapsed time is 14.130674 seconds.

Next convert only the inner loop to a parfor-loop. Measure the time needed and data
transferred as in the previous case.

A = 100;
tic
ticBytes(gcp);
for i = 1:100
parfor j = 1:100
a(i,j) = max(abs(eig(rand(A))));

end
end
tocBytes(gcp)
toc
BytesSentToWorkers BytesReceivedFromWorkers
1 1.3496e+06 5.487e+05
2 1.3496e+06 5.4858e+05
3 1.3677e+06 5.6034e+05
4 1.3476e+06 5.4717e+05
Total 5.4144e+06 2.2048e+06

Elapsed time is 48.631737 seconds.

If you convert the inner loop to a parfor-loop, both the time and amount of data
transferred are much greater than in the parallel outer loop. In this case, the elapsed time
is almost the same as in the nested for-loop example. The speedup is smaller than
running the outer loop in parallel, because you have more data transfer and thus more
parallel overhead. Therefore if you execute the inner loop in parallel, you get no
computational benefit compared to running the serial for-loop.

If you want to reduce parallel overhead and speed up your computation, run the outer
loop in parallel.
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If you convert the inner loop instead, then each iteration of the outer loop initiates a
separate parfor-loop. That is, the inner loop conversion creates 100 parfor-loops. Each
of the multiple parfor executions incurs overhead. If you want to reduce parallel
overhead, you should run the outer loop in parallel instead, because overhead only occurs
once.

Tip If you want to speed up your code, always run the outer loop in parallel, because you
reduce parallel overhead.

Nested for-Loops: Requirements and Limitations

If you want to convert a nested for-loop to a parfor-loop, you must ensure that your
loop variables are properly classified, see “Troubleshoot Variables in parfor-Loops” on
page 2-35. If your code does not adhere to the guidelines and restrictions labeled as
Required, you get an error. MATLAB catches some of these errors at the time it reads the
code, and others when it executes the code. These errors are labeled as Required
(static) or Required (dynamic) respectively.

Required (static): You must define the range of a for-loop nested in a parfor-loop by
constant numbers or broadcast variables.

In the following example, the code on the left does not work because you define the upper
limit of the for-loop by a function call. The code on the right provides a workaround by
first defining a broadcast or constant variable outside the parfor-loop:

Invalid Valid
A = zeros(100, 200); A = zeros(100, 200);
parfor i = 1l:size(A, 1) n = size(A, 2);
for j = 1l:size(A, 2) parfor i = l:size(A,1)
A(i, j) =1+ j; for j = 1:n
end A(i, j) =1+ 3;
end end

end

Required (static): The index variable for the nested for-loop must never be explicitly
assigned other than in its for-loop.
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This restriction is required, because changing the nested for-loop variable in the loop
body cannot guarantee that the region indexed by the for-loop variable is available at

each worker.

The code on the left is not valid because it tries to modify the value of the nested for-loop
variable j in the body of the loop. The code on the right provides a workaround by
assigning the nested for-loop variable to a temporary variable t, and then updating t.

Invalid
A = zeros(10);
parfor i = 1:10
for j = 1:10
AL, j) = 1;
j o= J+1;
end
end

Valid

A = zeros(10);

parfor i = 1:10
for j = 1:10
A(i, j) =1,
t=173;
t=1t+1;
end

end

Required (static): You cannot index or subscript a nested for-loop variable.

This restriction is required, because indexing a loop variable cannot guarantee the

independence of iterations.

The example on the left is invalid because it attempts to index the nested for-loop
variable j. The example on the right removes this indexing.

Invalid
A = zeros(10);
parfor i = 1:10
for j = 1:10
j(1);
end
end

Valid
A = zeros(10);
parfor i = 1:10
for j = 1:10
i
end
end

Required (static): When using the nested for-loop variable for indexing a sliced array,
you must use the variable in plain form, not as part of an expression.

For example, the following code on the left does not work, but the code on the right does:
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Invalid Valid
A = zeros(4, 11); A = zeros(4, 11);
parfor i = 1:4 parfor i = 1:4
for j = 1:10 for j = 2:11
A(i, j +1) =1+ j; A(i, j) =1i+3j - 1;
end end
end end

Required (static): If you use a nested for-loop to index into a sliced array, you cannot
use that array elsewhere in the parfor-loop.

In the following example, the code on the left does not work because A is sliced and
indexed inside the nested for-loop. The code on the right works because v is assigned to
A outside of the nested loop:

Invalid Valid
A = zeros(4, 10); A = zeros(4, 10);
parfor i = 1:4 parfor i = 1:4

for j = 1:10 v = zeros(1l, 10);

A(i, j) =1+ j; for j = 1:10

end v(j) =1+ j;

disp(A(i, j)) end
end disp(v(j))

A(i, :) = v;
end

Required (static): A sliced output variable can be used in only one nested for-loop.

Suppose that you use multiple for-loops (not nested inside each other) inside a parfor-
loop, to index into a single sliced array. In this case, the for-loops must loop over the
same range of values. In the following example, the code on the left does not work
because j and k loop over different values. The code on the right works to index different
portions of the sliced array A:
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Invalid Valid
A = zeros(4, 10); A = zeros(4, 10);
parfor i = 1:4 parfor i = 1:4
for j = 1:5 for j = 1:10
A(i, j) =1+ j; if j <6
end A(i, j) =1+ 3;
for k = 6:10 else
A(i, k) = pi; A(i, j) = pi;
end end
end end
end

parfor-Loop Limitations

Nested Functions

The body of a parfor-loop cannot reference a nested function. However, it can call a
nested function by a function handle. Try the following example. Note that A(idx) =
nfcn(idx) in the parfor-loop does not work. You must use feval to invoke the fcn
handle in the parfor-loop body.

function A = pfeg
function out = nfcn(in)
out =1 + in;
end

fcn = @nfcn;

parfor idx = 1:10

A(idx) = feval(fcn, idx);
end
end
>> pfeg
Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
ans =

2 3 4 5 6 7 8 9 10 11
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Tip If you use function handles that refer to nested functions inside a parfor-loop, then
the values of externally scoped variables are not synchronized among the workers.

Nested parfor-Loops

The body of a parfor-loop cannot contain a parfor-loop. For more information, see
“Nested parfor-Loops” on page 2-15.

Nested spmd Statements

The body of a parfor-loop cannot contain an spmd statement, and an spmd statement
cannot contain a parfor-loop. The reason is that workers cannot start or access further
parallel pools.

break and return Statements

The body of a parfor-loop cannot contain break or return statements. Consider
parfeval or parfevalOnAll instead, because you can use cancel on them.

Global and Persistent Variables

The body of a parfor-loop cannot contain global or persistent variable declarations.
The reason is that these variables are not synchronized between workers. You can use
global or persistent variables within functions, but their value is visible only to the
worker that creates them. Instead of global variables, it is a better practice to use
function arguments to share values.

]

To learn more about variable requirements, see “Troubleshoot Variables in parfor-Loops’
on page 2-35.

Scripts

If a script introduces a variable, you cannot call this script from within a parfor-loop or
spmd statement. The reason is that this script would cause a transparency violation. For
more details, see “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-
62.

Anonymous Functions

You can define an anonymous function inside the body of a parfor-loop. However, sliced
output variables inside anonymous functions are not supported. You can work around this
by using a temporary variable for the sliced variable, as shown in the following example.
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x = 1:10;
parfor i=1:10
temp = x(1i);
anonymousFunction = @() 2*temp;
x(1i) = anonymousFunction() + i;
end
disp(x);

For more information on sliced variables, see “Sliced Variables” on page 2-44.
inputname Functions

Using inputname to return the workspace variable name corresponding to an argument
number is not supported inside parfor-loops. The reason is that parfor workers do not
have access to the workspace of the MATLAB desktop. To work around this, call
inputname before parfor, as shown in the following example.

a="'a';
myFunction(a)

function X = myFunction(a)
name = inputname(l);

X=11;
parfor i=1:2
X = strcat(X,name);
end
end

load Functions

The syntaxes of Load that do not assign to an output structure are not supported inside
parfor-loops. Inside parfor, always assign the output of Load to a structure.

nargin or nargout Functions

The following uses are not supported inside parfor-loops:

* Using nargin or nargout without a function argument

* Using narginchk or nargoutchk to validate the number of input or output
arguments in a call to the function that is currently executing



See Also

The reason is that workers do not have access to the workspace of the MATLAB desktop.
To work around this, call these functions before parfor, as shown in the following
example.

myFunction('a','b")

function X = myFunction(a,b)
nin = nargin;

parfor i=1:2
X(i) = i*nin;

end

end

P-Code Scripts

You can call P-code script files from within a parfor-loop, but P-code scripts cannot
contain a parfor-loop. To work around this, use a P-code function instead of a P-code
script.

See Also
parfeval | parfevalOnAll | parfor

Related Examples
. “Decide When to Use parfor” on page 2-2

. “Convert for-Loops Into parfor-Loops” on page 2-8
. “Ensure That parfor-Loop Iterations are Independent” on page 2-12
. “Troubleshoot Variables in parfor-Loops” on page 2-35
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Scale Up parfor-Loops to Cluster and Cloud

2-26

In this example, you start on your local multicore desktop and measure the time required
to run a calculation, as a function of increasing numbers of workers. The test is called a
strong scaling test. It enables you to measure the decrease in time required for the
calculation if you add more workers. This dependence is known as speedup, and allows
you to estimate the parallel scalability of your code. You can then decide whether it is
useful to increase the number of workers in your parallel pool, and scale up to cluster and
cloud computing.

1 Create the function.

edit MyCode

2 In the MATLAB Editor, enter the new parfor-loop and add tic and toc to measure
the time elapsed.

function a = MyCode(A)

tic
parfor i = 1:200
a(i) = max(abs(eig(rand(A))));
end
toc

Save the file, and close the Editor.

On the Parallel > Parallel Preferences menu, check that your Default Cluster is
local (your desktop machine).

5 Inthe MATLAB Command Window, define a parallel pool of size 1, and run your
function on one worker to calculate the elapsed time. Note the elapsed time for a
single worker and shut down your parallel pool.

parpool(1l);
a = MyCode(1000);

Elapsed time is 172.529228 seconds.

delete(gcp);
6 Open a new parallel pool of two workers, and run the function again.

parpool(2);
a = MyCode(1000);



Scale Up parfor-Loops to Cluster and Cloud

time [s]

Note the elapsed time; you should see that this now has decreased compared to the
single worker case.

Try 4, 8, 12 and 16 workers. Measure the parallel scalability by plotting the elapsed
time for each number of workers on a log-log scale.
2 local
O
10° [ o T
o
o o O
10° 10° 10¢

number of workers

The figure shows the scalability for a typical multicore desktop PC (blue circle data
points). The strong scaling test shows almost linear speedup and significant parallel
scalability for up to eight workers. Observe from the figure that, in this case, we do
not achieve further speedup for more than eight workers. This result means that, on
a local desktop machine, all cores are fully used for 8 workers. You can get a different
result on your local desktop, depending on your hardware. To further speed up your
parallel application, consider scaling up to cloud or cluster computing.

2-27



2 Parallel for-Loops (parfor)

If you have exhausted your local workers, as in the previous example, you can scale

up your calculation to cloud computing. Check your access to cloud computing from
the Parallel > Discover Clusters menu.

Open a parallel pool in the cloud and run your application without changing your
code.

parpool(16);
a = MyCode(1000);

Note the elapsed time for increasing numbers of cluster workers. Measure the

parallel scalability by plotting the elapsed time as a function of number of workers on
a log-log scale.

10% -

O local
+  cloud

102 b ]

time [s]

+ O

107 :
10° 10"

number of workers
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time [s]

The figure shows typical performance for workers in the cloud (red plus data points).
This strong scaling test shows linear speedup and 100% parallel scalability up to 16
workers in the cloud. Consider further scaling up of your calculation by increasing
the number of workers in the cloud or on a compute cluster. Note that the parallel
scalability can be different, depending on your hardware, for a larger number of
workers and other applications.

If you have direct access to a cluster, you can scale up your calculation using workers
on the cluster. Check your access to clusters from the Parallel > Discover Clusters
menu. If you have an account, select cluster, open a parallel pool and run your
application without changing your code.
parpool(64);
a = MyCode(1000);
108 -
O local
+ eloud
*  cluster
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+
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2-30

The figure shows typical strong scaling performance for workers on a cluster (black x
data points). Observe that you achieve 100% parallel scalability, persisting up to at
least 80 workers on the cluster. Note that this application scales linearly - the
speedup is equal to the number of workers used.

This example shows a speedup equal to the number of workers. Not every task can
achieve a similar speedup, see for example “Interactively Run a Loop in Parallel
Using parfor” on page 1-8.

You might need different approaches for your particular tasks. To learn more about
alternative approaches, see “Choose a Parallel Computing Solution” on page 1-20.

Tip You can further profile a parfor-loop by measuring how much data is transferred to
and from the workers in the parallel pool by using ticBytes and tocBytes. For more
information and examples, see “Profiling parfor-loops” on page 2-66.

See Also

Related Examples

. “Discover Clusters” on page 6-17

. “Discover Clusters and Use Cluster Profiles” on page 6-15

. “Profiling parfor-loops” on page 2-66

. “Interactively Run a Loop in Parallel Using parfor” on page 1-8
. “Choose a Parallel Computing Solution” on page 1-20
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Use parfor-Loops for Reduction Assignments

These two examples show parfor-loops using reduction assignments. A reduction is an
accumulation across iterations of a loop. The example on the left uses x to accumulate a
sum across 10 iterations of the loop. The example on the right generates a concatenated
array, 1:10. In both of these examples, the execution order of the iterations on the
workers does not matter: while the workers calculate individual results for each iteration,
the client properly accumulates and assembles the final loop result.

X = 0; x2 = [1;
parfor i = 1:10 n = 10;
X = X + 1; parfor i = 1:n
end X2 = [x2, 1];
X end
X2
X =
X2 =
55
1 2 3 4 5 6

If the loop iterations operate in a nondeterministic sequence, you might expect the
concatenation sequence in the example on the right to be nonconsecutive. However,
MATLAB recognizes the concatenation operation and yields deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not a valid parfor-
loop because the value of an element of f in one iteration depends on the values of other
elements of f calculated in other iterations.

f = zeros(1,50);
f(1l) = 1;
f(2) = 2;
parfor n = 3:50
f(n) = f(n-1) + f(n-2);
end

When you are finished with your loop examples, clear your workspace and delete your
parallel pool of workers:

clear
delete(gcp)
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See Also

More About

. “Reduction Variables” on page 2-50
. “Ensure That parfor-Loop Iterations are Independent” on page 2-12
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Use Objects and Handles in parfor-Loops

In this section...

“Using Objects in parfor-Loops” on page 2-33
“Handle Classes” on page 2-33
“Sliced Variables Referencing Function Handles” on page 2-34

Using Objects in parfor-Loops

If you are passing objects into or out of a parfor-loop, the objects must properly
facilitate being saved and loaded. For more information, see “Save and Load Process for
Objects” (MATLAB).

You cannot slice the fields of objects because of first-level indexing constraints. For
details, see “Sliced Variables” on page 2-44.

For example, in the code on the left, both lines in the loop generate a classification error
because of the indexing. In the code on the right, as a workaround for sliced output, you
employ separate sliced arrays in the loop. Then you assign the structure fields after the
loop is complete.

Invalid Valid

parfor i = 1:4 parfor i = 1:4
outputData.outArrayl(i) = 1/i; outArrayl(i) = 1/1i;
outputData.outArray2(i) = i"2; outArray2(i) = i"2;

end end
outputData = struct('outArrayl',outArrayl, 'outAr

Handle Classes

You can send handle objects as inputs to the body of a parfor-loop. However, any
changes made to handle objects on the workers during loop iterations are not
automatically propagated back to the client. That is, changes made inside the loop are not
automatically reflected after the loop.

To get the changes back to the client after the loop, explicitly assign the modified handle
objects to output variables of the parfor-loop. In the following example, maps is a sliced
input/output variable.
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maps = {containers.Map(),containers.Map(),containers.Map()};
parfor ii = l:numel(maps)

mymap = maps{ii}; % input slice assigned to local copy

for jj = 1:1000

mymap (num2str(jj)) = rand;

end

maps{ii} = mymap; % modified local copy assigned to output slice
end

Sliced Variables Referencing Function Handles

You cannot directly call a function handle with the loop index as an input argument,
because this variable cannot be distinguished from a sliced input variable. If you must call
a function handle with the loop index variable as an argument, use feval.

The following example uses a function handle and a for-loop.

B = @sin;

for ii = 1:100
A(ii) = B(ii);

end

A corresponding parfor-loop does not allow B to reference a function handle. You can
work around the problem using feval.

B = @sin;
parfor ii
A(ii)

1:100
feval(B,ii);

end

See Also

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
. “Sliced Variables” on page 2-44
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Troubleshoot Variables in parfor-Loops

In this section...

“Ensure That parfor-Loop Variables Are Consecutive Increasing Integers” on page 2-35
“Avoid Overflows in parfor-Loops” on page 2-35

“Solve Variable Classification Issues in parfor-Loops” on page 2-36

“Structure Arrays in parfor-Loops” on page 2-39

“Converting the Body of a parfor-Loop into a Function” on page 2-40

“Unambiguous Variable Names” on page 2-40

“Transparent parfor-loops” on page 2-41

“Global and Persistent Variables” on page 2-41

Ensure That parfor-Loop Variables Are Consecutive Increasing
Integers

Loop variables in a parfor-loop must be consecutive increasing integers. For this reason,
the following examples return errors:

parfor i = 0:0.2:1 % not integers
parfor j = 1:2:11 % not consecutive
parfor k = 12:-1:1 % not increasing

You can fix these errors by converting the loop variables into a valid range. For example,
you can fix the noninteger example as follows:

iValues = 0:0.2:1;

parfor idx = l:numel(iValues)

i = iValues(idx);

end

Avoid Overflows in parfor-Loops

If MATLAB detects that the parfor-loop variable can overflow, it reports an error.
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Overflow condition

Example

Solution

The length of the parfor-
loop range exceeds the
maximum value of the loop
variable type.

Here, MATLAB reports an

error because

length(-128:127)>maxi

nt('int8'):

parfor idx=int8(-128:127)
idx;

end

Use a larger data type for
the parfor-loop variable. If
you want to keep the
original data type in your
calculations, convert the
parfor-loop variable inside
the parfor loop.

parfor idx=-128:127
int8(idx);
end

The initial value of the
parfor-loop range equals
the minimum value of the
loop variable type.

Here, MATLAB reports an

error because

O=intmin('uint32"'):

parfor idx=uint32(0:1)
idx;

end

* Use a larger data type
with a lower minimum
value, as in the previous
solution.

* Increment the range of
values. For example:

parfor idx=uint32(0:1)
idx-1;
end

H1

Solve Variable Classification Issues in parfor-Loops

When MATLAB recognizes a name in a parfor-loop as a variable, the variable is

classified in one of several categories, shown in the following table. Make sure that your
variables are uniquely classified and meet the category requirements. parfor-loops that
violate the requirement return an error.

Classification Description

“Loop Variables” |Loop indices

on page 2-42

“Sliced Variables” |Arrays whose segments are operated on by different iterations of the
on page 2-44 loop

“Broadcast Variables defined before the loop whose value is required inside the
Variables” on page |loop, but never assigned inside the loop
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Classification Description

“Reduction Variables that accumulates a value across iterations of the loop,
Variables” on page |regardless of iteration order

2-50

“Temporary Variables created inside the loop, and not accessed outside the loop
Variables” on page

2-59

To find out which variables you have, examine the code fragment. All variable
classifications in the table are represented in this code:

= 0;
pi;
= 0;
randil,10);
parfor i = 1:10

H o Q@
Il

a = 1; <«———— loop variable

temporary variable
z = z+1; sliced input variable
b{i) = xrii):
if i <= o <——— broadcast variable
d = 2%a;

reduction variable

sliced output variable

end

end

If you run into variable classification problems, consider these approaches before you
resort to the more difficult method of converting the body of a parfor-loop into a
function.

* Ifyou use a nested for-loop to index into a sliced array, you cannot use that array
elsewhere in the parfor-loop. The code on the left does not work because A is sliced
and indexed inside the nested for-loop. The code on the right works because v is
assigned to A outside the nested loop. You can compute an entire row, and then
perform a single assignment into the sliced output.
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Invalid Valid
A = zeros(4, 10); A = zeros(4, 10);
parfor i = 1:4 parfor i = 1:4

for j = 1:10 v = zeros(1l, 10);

A(i, j) =1+ j; for j = 1:10

end v(j) =1+ j;

disp(A(i, 1)) end
end disp(v(1))

A(i, ) = v;
end

The code on the left does not work because the variable x in parfor cannot be
classified. This variable cannot be classified because there are multiple assignments to
different parts of x. Therefore parfor cannot determine whether there is a
dependency between iterations of the loop. The code on the right works because you
completely overwrite the value of x. parfor can now determine unambiguously that x
is a temporary variable.

Invalid Valid

parfor idx = 1:10 parfor idx = 1:10
x(1) =7; x = [7, 8];
x(2) = 8; out(idx) = sum(x);
out(idx) = sum(x); end

end

This example shows how to slice the field of a structured array. See struct for
details. The code on the left does not work because the variable a in parfor cannot
be classified. This variable cannot be classified because the form of indexing is not
valid for a sliced variable. The first level of indexing is not the sliced indexing
operation, even though the field x of a appears to be sliced correctly. The code on the
right works because you extract the field of the struct into a separate variable tmpx.
parfor can now determine correctly that this variable is sliced. In general, you
cannot use fields of structs or properties of objects as sliced input or output
variables in parfor.

Invalid Valid
a.x = [l tmpx = [1;
parfor idx = 1:10 parfor idx = 1:10
a.x(idx) = 7; tmpx (idx) = 7;
end end
a.x = tmpx;
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Structure Arrays in parfor-Loops
Creating Structures as Temporaries

You cannot create a structure in a parfor-loop using dot notation assignment. In the
code on the left, both lines inside the loop generate a classification error. In the code on
the right, as a workaround you can use the struct function to create the structure in the
loop or in the first field.

Invalid Valid
parfor i = 1:4 parfor i = 1:4
temp.myfieldl = rand(); temp = struct();
temp.myfield2 = i; temp.myfieldl = rand();
end temp.myfield2 = i;
end
parfor i = 1:4
temp = struct('myfieldl',rand(), 'myfield2',1i
end

Slicing Structure Fields

You cannot use structure fields as sliced input or output arrays in a parfor-loop. In other
words, you cannot use the loop variable to index the elements of a structure field. In the
code on the left, both lines in the loop generate a classification error because of the
indexing. In the code on the right, as a workaround for sliced output, you employ separate
sliced arrays in the loop. Then you assign the structure fields after the loop is complete.

Invalid Valid

parfor i = 1:4 parfor i = 1:4
outputData.outArrayl(i) = 1/i; outArrayl(i) = 1/1i;
outputData.outArray2(i) = i"2; outArray2(i) = i"2;

end end
outputData = struct('outArrayl',outArrayl, 'outAr

The workaround for sliced input is to assign the structure field to a separate array before
the loop. You can use that new array for the sliced input.

inArrayl = inputData.inArrayl;
inArray2 = inputData.inArray2;
parfor i = 1:4

templ = inArrayl(i);
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temp2 = inArray2(i);
end

Converting the Body of a parfor-Loop into a Function

If all else fails, you can usually solve variable classification problems in parfor-loops by
converting the body of the parfor-loop into a function. In the code on the left, Code
Analyzer flags a problem with variable y, but cannot resolve it. In the code on the right,
you solve this problem by converting the body of the parfor-loop into a function.

Invalid Valid
function parfor_loop body bad function parfor_loop body good
data = rand(5,5); data = rand(5,5);
means = zeros(1,5); means = zeros(1,5);
parfor i = 1:5 parfor i = 1:5
% Code Analyzer flags problem % Call a function instead
% with variable y below means(i) = computeMeans(data(:,1i));
y.mean = mean(data(:,1i)); end
means(i) = y.mean; disp(means);
end
disp(means); % This function now contains the body

% of the parfor-loop

function means = computeMeans(data)
y.mean = mean(data);

means = y.Mmean;

Starting parallel pool (parpool) using the 'loca
0.6786 0.5691 0.6742 0.6462 0.63

Unambiguous Variable Names

If you use a name that MATLAB cannot unambiguously distinguish as a variable inside a
parfor-loop, at parse time MATLAB assumes you are referencing a function. Then at run-
time, if the function cannot be found, MATLAB generates an error. See “Variable Names”
(MATLAB). For example, in the following code f(5) could refer either to the fifth element
of an array named f, or to a function named f with an argument of 5. If f is not clearly
defined as a variable in the code, MATLAB looks for the function f on the path when the
code runs.

parfor i = 1:n
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a = f(5);

end

Transparent parfor-loops
The body of a parfor-loop must be transparent: all references to variables must be

“visible” in the text of the code. For more details about transparency, see “Ensure
Transparency in parfor-Loops or spmd Statements” on page 2-62.

Global and Persistent Variables

The body of a parfor-loop cannot contain global or persistent variable declarations.

See Also

More About

. “Decide When to Use parfor” on page 2-2

. “Convert for-Loops Into parfor-Loops” on page 2-8

. “Ensure That parfor-Loop Iterations are Independent” on page 2-12

. “Nested parfor and for-Loops and Other parfor Requirements” on page 2-15
. “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-62

. “Use parfor-Loops for Reduction Assignments” on page 2-31

. “Run Parallel Simulations” (Simulink)
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Loop Variables

The loop variable defines the loop index value for each iteration. You set it in the first line
of a parfor statement.

parfor p=1:12

For values across all iterations, the loop variable must evaluate to ascending consecutive
integers. Each iteration is independent of all others, and each has its own loop index
value.

Required (static): Assignments to the loop variable are not allowed.

This restriction is required, because changing p in the parfor body cannot guarantee the
independence of iterations.

This example attempts to modify the value of the loop variable p in the body of the loop,
and thus is invalid.

parfor p =
p=p+
a(p) = 1i;
end

1:n
1;

Required (static): You cannot index or subscript the loop variable in any way.

This restriction is required, because referencing a field of a loop variable cannot
guarantee the independence of iterations.

The following code attempts to reference a field (b) of the loop variable (p) as if it were a
structure. Both lines within the loop are invalid.

parfor p = 1:n

p.b =3

x(p) = fun(p.b)
end

Similarly, the following code is invalid because it attempts to index the loop variable as a
1-by-1 matrix:
parfor p = 1:n

)

x = p(1l
end
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parfor-loop.

Required (static): You cannot use a range increment in for-loops nested inside a

Consider the following example:

o>+ =
o unn

The following code is invalid.

parfor i = 1:1:N
for t = 1:1:T
i

end
end

The following code is valid.

parfor i = 1:1:N
for t = 1:T
B(i,t) = t;

end
end

See Also

parfor

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
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2-44

A sliced variable is one whose value can be broken up into segments, or slices, which are
then operated on separately by different workers. Each iteration of the loop works on a
different slice of the array. Using sliced variables can reduce communication between the
client and workers. Only those slices needed by a worker are sent to it when it starts
working on a particular range of indices.

In this example, a slice of A consists of a single element of that array.

parfor i = 1:length(A)
B(i) = f(A(i));
end

Characteristics of a Sliced Variable

If a variable in a parfor-loop has all the following characteristics, then the variable is
sliced:

» Type of First-Level Indexing — The first level of indexing is either parentheses, (), or
braces, {}.

+ Fixed Index Listing — Within the first-level parentheses or braces, the list of indices is
the same for all occurrences of a given variable.

* Form of Indexing — Within the list of indices for the variable, exactly one index
involves the loop variable.

» Shape of Array — The array maintains a constant shape. In assigning to a sliced
variable, the right side of the assignment cannot be [] or ' ', because these operators
attempt to delete elements.

Type of First-Level Indexing. For a sliced variable, the first level of indexing is enclosed in
either parentheses, (), or braces, {}.

Here are the forms for the first level of indexing for arrays that are sliced and not sliced.

Reference for Variable Not Sliced Reference for Sliced Variable

A.X A(...)

A.(...) A{...}
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After the first level, you can use any type of valid MATLAB indexing in the second and
subsequent levels.

The variable A shown here on the left is not sliced; that shown on the right is sliced:
A.q{i,12} A{i,12}.q

Fixed Index Listing. Within the first-level indexing of a sliced variable, the list of indices is
the same for all occurrences of a given variable.

The variable A on the left is not sliced because A is indexed by i and i+1 in different
places. In the code on the right, variable A is sliced correctly.

Not sliced Sliced
parfor i = 1:k parfor i = 1:k
B(:) = h(A(i), A(i+l)); B(:) = f(A(1));
end C(:) = g(A{i});
end

The example on the right shows occurrences of first-level indexing using both
parentheses and braces in the same loop, which is acceptable.

The following example on the left does not slice A because the indexing of A is not the
same in all places. The example on the right slices both A and B. The indexing of A is not
the same as the indexing of B. However, the indexing of both A and B are individually
consistent.

Not sliced Sliced
parfor i=1:10 A=[1 2 3 4 5 6 7 8 9 10;
b =A(1,1) + A(2,1) 10 20 30 40 50 60 70 80 90 100];
end B = zeros(1,10);
parfor i=1:10
for n=1:2
B(i) = B(i)+A(n,1i)
end
end

Form of Indexing. Within the first-level of indexing for a sliced variable, exactly one
indexing expression is of the form i, i+k, i-k, or k+i. The index i is the loop variable
and Kk is a scalar integer constant or a simple (non-indexed) broadcast variable. Every
other indexing expression is a positive integer constant, a simple (non-indexed) broadcast
variable, a nested for-loop index variable, colon, or end.
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With i as the loop variable, the A variables shown on the left are not sliced, while the A
variables on the right are sliced.

Not sliced Sliced
A(i+f(k),j,:,3) f(k) invalid for slid&idgk,j,:,3)
A(i,20:30,end) 20:30 not scalar A(i,:,end)
A(i,:,s.fieldl) s.fieldl not simple Bfdgdc&9t var

o® o of

When you use other variables along with the loop variable to index an array, you cannot
set these variables inside the loop. In effect, such variables are constant over the
execution of the entire parfor statement. You cannot combine the loop variable with
itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The variable A shown
here on either line is not sliced:

A(i,:) = [1;
A(end + 1) = i;

In the first case, A is not sliced because changing the shape of a sliced array would violate
assumptions governing communication between the client and workers.

In the second, A is not a sliced output because it is not indexed on the loop variable.

Sliced Input and Output Variables

All sliced variables have the characteristics of being input or output. A sliced variable can
sometimes have both characteristics. MATLAB transmits sliced input variables from the
client to the workers, and sliced output variables from workers back to the client. If a
variable is both input and output, it is transmitted in both directions.

In this parfor-loop, r is a sliced input variable and b is a sliced output variable.
a 0,;
z 0;
r rand(1,10);
parfor ii = 1:10
a = 1ii;
z =2z + 1ii;
b(ii) = r(ii);
end



Sliced Variables

However, if in each iteration, every reference to an array element is set before it is used,
the variable is not a sliced input variable. In this example, all elements of A are set, and
then only those fixed values are used.

parfor ii = 1:n
if someCondition

A(ii) = 32;
else
A(ii) = 17;
end
loop code that uses A(ii)

end

Sliced-output variables can grow dynamically through indexed assignments with default
values inserted at intermediate index positions. In this sliced variable example, you can
see that the default value of 0 has been inserted at several places in a.

a=1[1;
parfor idx = 1:10
if rand < 0.5
a(idx) = idx;
end
end

disp(a);
0 2 0 4 5 0 0 8 9 10

Even if a sliced variable is not explicitly referenced as an input, implicit usage can make it
so. In the following example, not all elements of A are necessarily set inside the parfor-
loop. Therefore the original values of the array are received, held, and then returned from
the loop, making A both a sliced input and output variable.

A=1:10;
parfor ii = 1:1
if rand < 0.
A(ii) = 0;

end
end
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Scalar Expansion with Sliced Outputs

You cannot use scalar expansion to define a set of values assigned to a sliced output array.
For example, the following code attempts to expand the value idx for assignment to each
element of the vector defined by x ( : , idx); this action generates an error.

X = zeros(10,12);

parfor idx = 1:12
X (:,idx) = idx;
end

The following code offers a suggested workaround for this limitation.
X = zeros(10,12);
parfor idx = 1:12

x(:,1dx) = repmat(idx,10,1);
end

See Also

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
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Broadcast Variables

A broadcast variable is any variable, other than the loop variable or a sliced variable, that
does not change inside the loop. At the start of a parfor-loop, the values of any
broadcast variables are sent to all workers. This type of variable can be useful or even
essential for particular tasks. However, large broadcast variables can cause significant
communication between client and workers and increase parallel overhead. Sometimes it
is more efficient to use temporary variables for this purpose, creating and assigning them
inside the loop.

For more details, see “Temporary Variables” on page 2-59 and “Deciding When to Use
parfor” on page 2-2.

See Also

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
. “Deciding When to Use parfor” on page 2-2
. “Temporary Variables” on page 2-59
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MATLAB supports an important exception, called reduction, to the rule that loop
iterations must be independent. A reduction variable accumulates a value that depends
on all the iterations together, but is independent of the iteration order. MATLAB allows

reduction variables in parfor-loops.

Reduction variables appear on both sides of an assignment statement, such as any of the
following, where expr is a MATLAB expression.

X = X + expr X = expr + X

X =X - expr See Associativity in Reduction Assignments in
“Requirements for Reduction Assignments”
on page 2-53

X =X .* expr X = expr .* X

X =X * expr X = expr * X

X =X & expr X = expr & X

X =X | expr X = expr | X

X = [X, expr] X = [expr, X]

X = [X; expr] X = [expr; X]

X = min(X, expr) X = min(expr, X)

X = max(X, expr) X = max(expr, X)

X = union(X, expr) X = union(expr, X)

X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction
assignment. By definition, a reduction variable can appear only in assignments of this

type.

The general form of a reduction assignment is

X =

f(X, expr)

X = f(expr, X)

The following example shows a typical usage of a reduction variable X.

X = ...

parfor i = 1:n

; % Do some initialization of X




Reduction Variables

X =X+ d(i);
end

This loop is equivalent to the following, where you calculate each d (i) by a different
iteration.

X=X+d(1) + ... + d(n)

In a regular for-loop, the variable X would get its value either before entering the loop or
from the previous iteration of the loop. However, this concept does not apply to parfor-
loops.

In a parfor-loop, the value of X is never transmitted from client to workers or from
worker to worker. Rather, additions of d (i) are done in each worker, with i ranging over
the subset of 1:n being performed on that worker. The results are then transmitted back
to the client, which adds the partial sums of the workers into X. Thus, workers do some of
the additions, and the client does the rest.

Notes About Required and Recommended Guidelines

If your parfor code does not adhere to the guidelines and restrictions labeled as
Required, you get an error. MATLAB catches some of these errors at the time it reads the
code, and others when it executes the code. These errors are labeled as Required
(static) or Required (dynamic) respectively. Guidelines that do not cause errors are
labeled as Recommended. You can use MATLAB Code Analyzer to help parfor-loops
comply with the guidelines.

Basic Rules for Reduction Variables

The following requirements further define the reduction assignments associated with a
given variable.

Required (static): For any reduction variable, the same reduction function or operation
must be used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses + in one
instance, and [, ] in another. The parfor-loop on the right is valid.
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Invalid Valid
parfor i = 1:n parfor i = 1:n
if testLevel(k) if testLevel(k)
A=A+ 1; A=A+ 1;
else else
A = [A, 4+i]; A=A+ 1+ 5*%k;
end end
% loop body continued % loop body continued
end end

Required (static): If the reduction assignment uses *, [, 1, or [; ], then X must be
consistently specified as the first or second argument in every reduction assignment.

The parfor-loop on the left is not valid because the order of items in the concatenation is
not consistent throughout the loop. The parfor-loop on the right is valid.

Invalid Valid
parfor i = 1:n parfor i = 1:n
if testLevel(k) if testLevel(k)
A = [A, 4+i]; A = [A, 4+i];
else else
A= [r(i1), Al; A=1[A, r(1)];
end end
% loop body continued % loop body continued
end end

|Required (static): You cannot index or subscript a reduction variable.

The code on the left is not valid because it tries to index a, and so MATLAB cannot
classify it as a reduction variable. To fix it, the code on the right uses a non-indexed

variable.

Invalid Valid

a.x =0 tmpx = 0

parfor i = 1:10 parfor i = 1:10
a.x = a.x + 1; tmpx = tmpx + 1;

end end

a.x = tmpx;
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Requirements for Reduction Assignments

Chaining Reduction Operators. MATLAB classifies assignments of the form X = expr op
XorX = X op expr as reduction statements when they are equivalent to the
parenthesized assignments X = (expr) op XorX = X op (expr) respectively. Xis a
variable, op is a reduction operator, and expr is an expression with one or more binary
reduction operators. Consequently, due to the MATLAB operator precedence rules,
MATLAB might not classify some assignments of the form X = expr opl X op2

expr2 ..., that chain operators, as reduction statements in parfor-loops.

In this example, MATLAB classifies X as a reduction variable because the assignment is
equivalentto X = X + (1 * 2).

X =0;

parfor i=1:10
X=X+1%*2;

end

In this example, MATLAB classifies X as a temporary variable because the assignment,
equivalentto X = (X * 1) + 2,isnotoftheform X = (expr) op XorX = X op
(expr).

X =0;

parfor i=1:10
X=X*14+ 2;

end

As a best practice, use parentheses to explicitly specify operator precedence for chained
reduction assignments.

Reduction Assignments. In addition to the specific forms of reduction assignment listed in
the table in “Reduction Variables” on page 2-50, the only other (and more general) form
of a reduction assignment is

X = f(X, expr) X = f(expr, X)

Required (static): f can be a function or a variable. If f is a variable, then you cannot
change f in the parfor body (in other words, it is a broadcast variable).

If f is a variable, then for all practical purposes its value at run time is a function handle.
However, as long as the right side can be evaluated, the resulting value is stored in X.
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The parfor-loop on the left does not execute correctly because the statement f =
@times causes T to be classified as a temporary variable. Therefore f is cleared at the
beginning of each iteration. The parfor-loop on the right is correct, because it does not
assign f inside the loop.

Invalid Valid

f = @(x,k)x * k; f = @a(x,k)x * k;

parfor i = 1:n parfor i = 1:n
a = f(a,i); a= f(a,i);
% loop body continued % loop body continued
f = @times; % Affects f end

end

The operators && and | | are not listed in the table in “Reduction Variables” on page 2-50.
Except for && and | |, all the matrix operations of MATLAB have a corresponding function
f, such that u op v is equivalent to f(u,v). For & and | |, such a function cannot be
written because u&&v and u | | v might or might not evaluate v. However, f(u,v) always
evaluates v before calling f. Therefore && and | | are excluded from the table of allowed
reduction assignments for a parfor-loop.

Every reduction assignment has an associated function f. The properties of f that ensure
deterministic behavior of a parfor statement are discussed in the following sections.

Associativity in Reduction Assignments. The following practice is recommended for the
function f, as used in the definition of a reduction variable. However, this rule does not
generate an error if not adhered to. Therefore, it is up to you to ensure that your code
meets this recommendation.

Recommended: To get deterministic behavior of parfor-loops, the reduction function f
must be associative.

To be associative, the function f must satisfy the following for all a, b, and c.

f(a,f(b,c)) = f(f(a,b),c)

The classification rules for variables, including reduction variables, are purely syntactic.
They cannot determine whether the f you have supplied is truly associative or not.
Associativity is assumed, but if you violate this rule, each execution of the loop might
result in different answers.




Reduction Variables

Note The addition of mathematical real numbers is associative. However, the addition of
floating-point numbers is only approximately associative. Different executions of this
parfor statement might produce values of X with different round-off errors. You cannot
avoid this cost of parallelism.

For example, the statement on the left yields 1, while the statement on the right returns 1
+ eps:

(1 + eps/2) + eps/2 1 + (eps/2 + eps/2)

Except for the minus operator (-), all special cases listed in the table in “Reduction
Variables” on page 2-50 have a corresponding (approximately) associative function.
MATLAB calculates the assignment X = X - expr byusing X = X + (-expr). (So,
technically, the function for calculating this reduction assignment is plus, not minus.)
However, the assignment X = expr - X cannot be written using an associative function,
which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions, including +, . *,
min, and max, intersect, and union, are also commutative. That is, they satisfy the
following for all a and b.

f(a,b) = f(b,a)

Noncommutative functions include * (because matrix multiplication is not commutative
for matrices in which both dimensions have size greater than one), [, ], and [; ].
Noncommutativity is the reason that consistency in the order of arguments to these
functions is required. As a practical matter, a more efficient algorithm is possible when a
function is commutative as well as associative, and parfor is optimized to exploit
commutativity.

Recommended: Except in the cases of *, [, ], and [; ], the function f of a reduction
assignment must be commutative. If f is not commutative, different executions of the
loop might result in different answers.

Violating the restriction on commutativity in a function used for reduction could result in
unexpected behavior, even if it does not generate an error.

Unless f is a known noncommutative built-in function, it is assumed to be commutative.
There is currently no way to specify a user-defined, noncommutative function in parfor.

Overloading in Reduction Assignments. Most associative functions f have an identity
element e, so that for any a, the following holds true.
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f(e,a) = a = f(a,e)

Examples of identity elements for some functions are listed here.

Function Identity Element
+ 0

*and .* 1

[,]and[;] []

& true

| false

MATLAB uses the identity elements of reduction functions when it knows them. So, in
addition to associativity and commutativity, also keep identity elements in mind when
overloading these functions.

Recommended: An overload of +, *, .*, [, ], or [; ] must be associative if it is used in
a reduction assignment in a parfor-loop. The overload must treat the respective
identity element in the table (all with class double) as an identity element.

Recommended: An overload of +, . *, union, or intersect must be commutative.

There is no way to specify the identity element for a function. In these cases, the behavior
of parfor is less efficient than for functions with a known identity element, but the
results are correct.

Similarly, because of the special treatment of X = X - expr, the following is
recommended.

Recommended: An overload of the minus operator (-) must obey the mathematical law
that X - (y + Zz) isequivalentto (X - y) - z.

Using a Custom Reduction Function

Suppose that each iteration of a loop performs some calculation, and you are interested in
finding which iteration of a loop produces the maximum value. This reduction exercise
makes an accumulation across multiple iterations of a loop. Your reduction function must
compare iteration results, until the maximum value can be determined after all iterations
are compared.
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First consider the reduction function itself. To compare one iteration result against
another, the function requires as input the current result and the known maximum from
other iterations so far. Each of the two inputs is a vector containing iteration results and
iteration number.

function mc = comparemax(A, B)
% Custom reduction function for 2-element vector input

if A(1l) >= B(1)
mc = A;
else
mc = B;
end

Compare the two input data values
Return the vector with the larger result

[
“©
[

“©

Inside the loop, each iteration calls the reduction function (comparemax), passing in a
pair of two-element vectors:

¢ The accumulated maximum and its iteration index, which is the reduction variable
cummax

¢ The iteration value and index

If the data value of the current iteration is greater than the maximum in cummmax, the
function returns a vector of the new value and its iteration number. Otherwise, the
function returns the existing maximum and its iteration number.

Each iteration calls the reduction function comparemax to compare its own data [dat
i] to data already accumulated in cummax. Try the following code for this loop.

% First element of cummax is maximum data value
% Second element of cummax is where (iteration) maximum occurs
cummax = [0 0]; % Initialize reduction variable
parfor ii = 1:100
dat = rand(); % Simulate some actual computation
cummax = comparemax(cummax, [dat ii]);
end
disp(cummax);

2-57



2 Parallel for-Loops (parfor)

See Also

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
. “Use parfor-Loops for Reduction Assignments” on page 2-31
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Temporary Variables

A temporary variable is any variable that is the target of a direct, nonindexed assignment,
but is not a reduction variable. In the following parfor-loop, a and d are temporary

variables:
a=0;
z = 0;
r = rand(1,10);
parfor i = 1:10
a=1i; % Variable a is temporary
z =27z + 1i;
if i <=5
d = 2*a; % Variable d is temporary
end
end

In contrast to the behavior of a for-loop, MATLAB clears any temporary variables before
each iteration of a parfor-loop. To help ensure the independence of iterations, the values
of temporary variables cannot be passed from one iteration of the loop to another.
Therefore, temporary variables must be set inside the body of a parfor-loop, so that
their values are defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary variable in a
parfor-loop has no effect on a variable with the same name that exists outside the loop.
This behavior is different from ordinary for-loops.

Uninitialized Temporaries

Temporary variables in a parfor-loop are cleared at the beginning of every iteration.
MATLAB can sometimes detect cases in which loop iterations use a temporary variable
before it is set in that iteration. In this case, MATLAB issues a static error rather than a
run-time error. There is little point in allowing execution to proceed if a run-time error is
guaranteed to occur. This kind of error often arises because of confusion between for
and parfor, especially regarding the rules of classification of variables. For example:

b = true;
parfor i = 1:n
if b & some condition(i)
do _something(i);
b = false;
end
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end

This loop is acceptable as an ordinary for-loop. However, as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment inside the
loop. Therefore it is cleared at the start of each iteration, so its use in the condition of the
if is guaranteed to be uninitialized. If you change parfor to for, the value of b assumes
sequential execution of the loop. In that case, do_something(1i) is executed only for the
lower values of i until b is set false.

Temporary Variables Intended as Reduction Variables

Another common cause of uninitialized temporaries can arise when you have a variable
that you intended to be a reduction variable. However, if you use it elsewhere in the loop,
then it is classified as a temporary variable. For example:

s =0;

parfor i = 1:n
s =5 + f(i);
if (s > whatever)
end

end

If the only occurrences of s are the two in the first statement of the body, s would be
classified as a reduction variable. But in this example, s is not a reduction variable
because it has a use outside of reduction assignments in the line s > whatever.
Because s is the target of an assignment (in the first statement), it is a temporary.
Therefore MATLAB issues an error, but points out the possible connection with reduction.

If you change parfor to for, the use of s outside the reduction assignment relies on the
iterations being performed in a particular order. In a parfor-loop, it matters that the
loop “does not care” about the value of a reduction variable as it goes along. It is only
after the loop that the reduction value becomes usable.

ans Variable

Inside the body of a parfor-loop, the ans variable is classified as a temporary variable.
All considerations and restrictions for temporary variables apply to ans. For example,
assignments to ans inside a parfor-loop have no effect on ans outside the loop.



See Also

See Also

More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35
. “Reduction Variables” on page 2-50

. “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-62
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Ensure Transparency in parfor-Loops or spmd
Statements

The body of a parfor-loop or spmd block must be transparent. Transparency means that

all references to variables must be visible in the text of the code.

In the following examples, the variable X is not transferred to the workers. Only the
character vector 'X' is passed to eval, and X is not visible as an input variable in the
loop or block body. As a result, MATLAB issues an error at run time.

X =5; X =5;

parfor ii = 1:4 spmd
eval('X'); eval('X');

end end

Similarly, you cannot clear variables from a workspace by executing clear inside a
parfor or spmd statement:

parfor ii = 1:4 spmd; clear('X'); end
<statements...>
clear('X') % cannot clear: transparency violation
<statements...>

end

Alternatively, you can free up memory used by a variable by setting its value to empty
when it is no longer needed.

parfor ii = 1:4
<statements...>
X=11;
<statements...>

end

In the case of spmd blocks, you can clear its Composite from the client workspace.

In general, the requirement for transparency restricts all dynamic access to variables,
because the entire variable might not be present in any given worker. In a transparent
workspace, you cannot create, delete, modify, access, or query variables if you do not
explicitly specify these variables in the code.

Examples of other actions or functions that violate transparency in a parfor-loop
include:
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* who and whos
* evalc, evalin, and assignin with the workspace argument specified as 'caller’
* save and load, unless the output of Load is assigned to a variable

+ If a script attempts to read or write variables of the parent workspace, then running
this script can cause a transparency violation. To avoid this issue, convert the script to
a function, and call it with the necessary variables as input or output arguments.

Note Transparency applies only to the direct body of the parfor or spmd construct, and
not to any functions called from there. The workaround for save and load is to hide the
calls to save and load inside a function.

MATLAB does successfully execute eval and evalc statements that appear in functions
called from the parfor body.

Parallel Simulink Simulations

You can run Simulink models in parallel with the parsim command instead of using
parfor-loops. For more information and examples of using Simulink in parallel, see “Run
Multiple Simulations” (Simulink).

» If your Simulink model requires access to variables contained in a .mat file, you must
load these parameters in the workspace of each worker. You must do this before the
parfor-loop, and after opening parpool. To achieve this, you can use spmd or
parfevalOnAll, as shown in the examples.

spmd
evalin('base', 'load(''path/to/file'")")
end
parfevalOnAll(@evalin, 0, 'base', 'load(''path/to/file'')")

» If your model also requires variables defined in the body of your MATLAB script, you
must use assignin or evalin to move these variables to the base workspace of each
worker, in every parfor iteration.

See Also

parfor | spmd
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More About

. “Troubleshoot Variables in parfor-Loops” on page 2-35

. “Run Single Programs on Multiple Data Sets” on page 3-2
. “Run Parallel Simulations” (Simulink)
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Improve parfor Performance

You can improve the performance of parfor-loops in various ways. This includes parallel
creation of arrays inside the loop; profiling parfor-loops; slicing arrays; and optimizing
your code on local workers before running on a cluster.

Where to Create Arrays

When you create a large array in the client before your parfor-loop, and access it within
the loop, you might observe slow execution of your code. To improve performance, tell
each MATLAB worker to create its own arrays, or portions of them, in parallel. You can
save the time of transferring data from client to workers by asking each worker to create
its own copy of these arrays, in parallel, inside the loop. Consider changing your usual
practice of initializing variables before a for-loop, avoiding needless repetition inside the
loop. You might find that parallel creation of arrays inside the loop improves performance.

Performance improvement depends on different factors, including

* size of the arrays

+ time needed to create arrays

* worker access to all or part of the arrays

* number of loop iterations that each worker performs

Consider all factors in this list when you are considering to convert for-loops to parfor-
loops. For more details, see “Convert for-Loops Into parfor-Loops” on page 2-8.

As an alternative, consider the parallel.pool.Constant function to establish
variables on the pool workers before the loop. These variables remain on the workers
after the loop finishes, and remain available for multiple parfor-loops. You might
improve performance using parallel.pool.Constant, because the data is transferred
only once to the workers.

In this example, you first create a big data set D and execute a parfor-loop accessing D.
Then you use D to build a parallel.pool.Constant object, which allows you to reuse
the data by copying D to each worker. Measure the elapsed time using tic and toc for
each case and note the difference.

function constantDemo
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D = rand(1le7, 1);
tic
for i 1:20
a 0;
parfor j = 1:60
a =a+ sum(D);

end
end
toc

tic
D = parallel.pool.Constant(D);
for i = 1:20
b =0;
parfor j = 1:60
b =Db + sum(D.Value);
end
end
toc

>> constantDemo

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Elapsed time is 63.839702 seconds.

Elapsed time is 10.194815 seconds.

In the second case, you send the data only once. You can enhance the performance of the
parfor-loop by using the parallel.pool.Constant object.

Profiling parfor-loops

You can profile a parfor-loop by measuring the time elapsed using tic and toc. You can
also measure how much data is transferred to and from the workers in the parallel pool
by using ticBytes and tocBytes. Note that this is different from profiling MATLAB
code in the usual sense using the MATLAB profiler, see “Profile to Improve Performance”
(MATLAB).

This example calculates the spectral radius of a matrix and converts a for-loop into a
parfor-loop. Measure the resulting speedup and the amount of transferred data.

1 In the MATLAB Editor, enter the following for-loop. Add tic and toc to measure the
time elapsed. Save the file as MyForLoop.m.

function a = MyForLoop(A)
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tic
for i = 1:200
a(i) = max(abs(eig(rand(A))));
end
toc

Run the code, and note the elapsed time.
a = MyForLoop(500);

Elapsed time is 31.935373 seconds.

In MyForLoop.m, replace the for-loop with a parfor-loop. Add ticBytes and
tocBytes to measure how much data is transferred to and from the workers in the
parallel pool. Save the file as MyParforLoop.m.

ticBytes(gcp);
parfor i = 1:200
a(i) max (abs(eig(rand(A))));

end
tocBytes(gcp)

Run the new code, and run it again. Note that the first run is slower than the second
run, because the parallel pool has to be started and you have to make the code
available to the workers. Note the elapsed time for the second run.

By default, MATLAB automatically opens a parallel pool of workers on your local
machine.

a = MyParforLoop(500);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 worke
BytesSentToWorkers BytesReceivedFromWorkers
1 15340 7024
2 13328 5712
3 13328 5704
4 13328 5728
Total 55324 24168

Elapsed time is 10.760068 seconds.

The elapsed time is 31.9 seconds in serial and 10.8 seconds in parallel, and shows
that this code benefits from converting to a parfor-loop.
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Slicing Arrays

If a variable is initialized before a parfor-loop, then used inside the parfor-loop, it has
to be passed to each MATLAB worker evaluating the loop iterations. Only those variables
used inside the loop are passed from the client workspace. However, if all occurrences of
the variable are indexed by the loop variable, each worker receives only the part of the
array it needs.

As an example, you first run a parfor-loop using a sliced variable and measure the
elapsed time.

% Sliced version
M 100;

N 1le6;
data = rand(M, N);

tic
parfor idx = 1:M
out2(idx) = sum(data(idx, :)) ./ N;
end
toc

Elapsed time is 2.261504 seconds.

Now suppose that you accidentally use a reference to the variable data instead of N
inside the parfor-loop. The problem here is that the call to size(data, 2) converts
the sliced variable into a broadcast (non-sliced) variable.

% Accidentally non-sliced version
clear

100;
le6;
ta = rand(M, N);

M
N
da

tic
parfor idx = 1:M
out2(idx) = sum(data(idx, :)) ./ size(data, 2);
end
toc

Elapsed time is 8.369071 seconds.
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Note that the elapsed time is greater for the accidentally broadcast variable.

In this case, you can easily avoid the non-sliced usage of data, because the result is a
constant, and can be computed outside the loop. In general, you can perform
computations that depend only on broadcast data before the loop starts, since the
broadcast data cannot be modified inside the loop. In this case, the computation is trivial,
and results in a scalar result, so you benefit from taking the computation out of the loop.

Optimizing on Local vs. Cluster Workers

Running your code on local workers might offer the convenience of testing your
application without requiring the use of cluster resources. However, there are certain
drawbacks or limitations with using local workers. Because the transfer of data does not
occur over the network, transfer behavior on local workers might not be indicative of how
it will typically occur over a network.

With local workers, because all the MATLAB worker sessions are running on the same
machine, you might not see any performance improvement from a parfor-loop regarding
execution time. This can depend on many factors, including how many processors and
cores your machine has. The key point here is that a cluster might have more cores
available than your local machine. If your code can be multithreaded by MATLAB, then
the only way to go faster is to use more cores to work on the problem, using a cluster.

You might experiment to see if it is faster to create the arrays before the loop (as shown
on the left below), rather than have each worker create its own arrays inside the loop (as
shown on the right).

Try the following examples running a parallel pool locally, and notice the difference in
time execution for each loop. First open a local parallel pool:

parpool('local")

Run the following examples, and execute again. Note that the first run for each case is
slower than the second run, because the parallel pool has to be started and you have to
make the code available to the workers. Note the elapsed time, for each case, for the
second run.
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tic;
n = 200;
M = magic(n);
R = rand(n);
parfor i = 1:n
A(i) = sum(M(i,:).*R(n+1-1,:));
end
toc

tic;
n = 200;
parfor i = 1:n
M = magic(n);
R = rand(n);
A(i) = sum(M(i,:).*R(n+1l-1,:));
end
toc

Running on a remote cluster, you might find different behavior, as workers can
simultaneously create their arrays, saving transfer time. Therefore, code that is optimized
for local workers might not be optimized for cluster workers, and vice versa.

See Also
parallel.pool.Constant

More About

. “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-62
. “Use parfor-Loops for Reduction Assignments” on page 2-31
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Run Code on Parallel Pools

In this section...
“What Is a Parallel Pool?” on page 2-71
“Automatically Start and Stop a Parallel Pool” on page 2-72

“Alternative Ways to Start and Stop Pools” on page 2-73

“Pool Size and Cluster Selection” on page 2-74

What Is a Parallel Pool?

A parallel pool is a set of MATLAB workers on a compute cluster or desktop. By default, a
parallel pool starts automatically when needed by parallel language features such as
parfor. You can specify the default pool size and cluster in your parallel preferences.
The preferences panel displays your pool size and cluster when you select Parallel
Preferences in the Parallel menu. You can change pool size and cluster in the Parallel
menu. Alternatively, you can choose cluster and pool size using parcluster and
parpool respectively, on the MATLAB command line. See the image for more detail.

The workers in a parallel pool can be used interactively and communicate with each other
during the lifetime of the job. You can view your parpool jobs in the “Job Monitor” on
page 6-32. While these pool workers are reserved for your interactive use, they are not
available to other users. You can have only one parallel pool at a time from a MATLAB
client session. In MATLAB, the current parallel pool is represented by a parallel.Pool
object.
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Cluster

Worlcer Worker
Parallel Fool
parcluster
Client MATLAB
parpool Worlcer Worker
Worker Worker
Worcer
Worler

Automatically Start and Stop a Parallel Pool

By default, a parallel pool starts automatically when needed by certain parallel language
features. Many functions can automatically start a parallel pool, including:
* parfor

* spmd

* distributed

* (Composite

* parallel.pool.Constant

+ parfeval

+ parfevalOnAll

* gcp

* mapreduce

* mapreducer

+ tall

+ ticBytes and tocBytes
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Your parallel preferences specify which cluster the pool runs on, and the preferred
number of workers in the pool. To access your preferences, on the Home tab, in the
Environment section, click Parallel > Parallel Preferences.

Alternative Ways to Start and Stop Pools

In your parallel preferences, you can turn off the option for the pool to open or close
automatically. If you choose not to have the pool open automatically, you can control the
pool with the following techniques.

Control the Parallel Pool from the MATLAB Desktop

You can use the parallel status indicator in the lower left corner of the MATLAB desktop
to start a parallel pool manually.

Start parallel pool Ib
Parallel preferences

~ | Ready

Click the indicator icon, and select Start parallel pool. The pool size and cluster are
specified by your parallel preferences and default cluster. Your default cluster is indicated
by a check mark on the Parallel > Default Cluster menu.

The menu options are different when a pool is running. You can:

* View the number of workers and cluster name
* Change the time until automatic shut-down
* Shut down the parallel pool

Show fewer details

Parallel pool on local has been running for about 1
min (since 14:12) and will shut down if still idle in 29
minutes. (Reset to 30 minutes) (Shut down now)
Mumber of workers: 4

im-
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To stop a pool, you can also select Shut down parallel pool.

Shut down parallel pool

Parallel preferences

M-

Programming Interface
Start a Parallel Pool

You can start and stop a parallel pool programmatically by using default settings or
specifying alternatives.

To open a parallel pool based on your preference settings:

parpool

To open a pool of a specific size:

parpool(4)

To use a cluster other than your default and specify where the pool runs:
parpool('MyCluster',4)

Shut Down a Parallel Pool

To get the current parallel pool and use that object when you want to shut down the pool:

p = gcp;
delete(p)

Ensure That No Parallel Pool Is Running

When you issue the command gcp without arguments, you might inadvertently open a
pool. To avoid this problem:

delete(gcp('nocreate'))

Pool Size and Cluster Selection

There are several places to specify pool size. Several factors might limit the size of a pool.
The actual size of your parallel pool is determined by the combination of the following:
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Licensing or cluster size

The maximum limit on the number of workers in a pool is restricted by the number of
workers in your cluster. This limit might be determined by the number of MATLAB
Parallel Server licenses available. In the case of MATLAB Job Scheduler, the limit
might be determined by the number of workers running in the cluster. A local cluster
running on the client machine requires no licensing beyond the one for Parallel
Computing Toolbox. The limit on the number of workers is high enough to support
the range of known desktop hardware.

Cluster profile number of workers (NumWorkers)

A cluster object can set a hard limit on the number of workers, which you specify in

the cluster profile. Even if you request more workers at the command line or in your
preferences, you cannot exceed the limit set in the applicable profile. Attempting to

exceed this number generates an error.

Command-line argument

If you specify a pool size at the command line, you override the setting of your
preferences. This value must fall within the limits of the applicable cluster profile.

Parallel preferences

If you do not specify a pool size at the command line, MATLAB attempts to start a
pool with size determined by your parallel preferences. This value is a preference,
not a requirement or a request for a specific number of workers. So if a pool cannot
start with as many workers as called for in your preferences, you get a smaller pool
without any errors. You can set the value of the Preferred number of workers to a
large number, so that it never limits the size of the pool that is created. If you need an
exact number of workers, specify the number at the command line.

For selection of the cluster on which the pool runs, precedence is determined by the
following.

1

The command-line cluster object argument overrides the default profile setting and
uses the cluster identified by the profile 'MyProfile"'.

o
p

The cluster is specified in the default profile.

parcluster('MyProfile');
parpool(c);

p = parpool;
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See Also
delete | distributed | gcp | parcluster | parfeval | parfor | parpool | spmd

Related Examples

. “Run MATLAB Functions with Automatic Parallel Support” on page 1-24
. “Scale up from Desktop to Cluster”

More About

. “How Parallel Computing Products Run a Job” on page 6-2
. “Decide When to Use parfor” on page 2-2

. “Specity Your Parallel Preferences” on page 6-12

. “Discover Clusters and Use Cluster Profiles” on page 6-15
. “Scale Up parfor-Loops to Cluster and Cloud” on page 2-26
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Repeat Random Numbers in parfor-Loops

As described in “Control Random Number Streams on Workers” on page 6-40, each
worker in a cluster working on the same job has an independent random number
generator stream. By default, therefore, each worker in a pool, and each iteration in a
parfor-loop has a unique, independent set of random numbers. Subsequent runs of the
parfor-loop generate different numbers.

In a parfor-loop, you cannot control what sequence the iterations execute in, nor can
you control which worker runs which iterations. So even if you reset the random number
generators, the parfor-loop can generate the same values in a different sequence.

To reproduce the same set of random numbers in a parfor-loop each time the loop runs,
you must control random generation by assigning a particular substream for each
iteration.

First, create the stream you want to use, using a generator that supports substreams.
Creating the stream as a parallel.pool.Constant allows all workers to access the
stream.

sc = parallel.pool.Constant(RandStream('Threefry'))

Inside the parfor-loop, you can set the substream index by the loop index. This ensures
that each iteration uses its particular set of random numbers, regardless of which worker
runs that iteration or what sequence iterations run in.

r = zeros(1,16);

parfor i = 1:16
stream = sc.Value; % Extract the stream from the Constant
stream.Substream = i;
r(i) = rand(stream);

end

r

r =
Columns 1 through 8

0.3640 0.8645 0.0440 0.7564 0.5323 0.8075 0.2145 0.9128
Columns 9 through 16

0.4057 0.0581 0.5515 0.4347 0.3531 0.4677 0.8287 0.2312
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See Also

RandStream | rng

More About

. “Control Random Number Streams on Workers” on page 6-40
. “Creating and Controlling a Random Number Stream” (MATLAB)
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* “Run Single Programs on Multiple Data Sets” on page 3-2
* “Access Worker Variables with Composites” on page 3-9
» “Distributing Arrays to Parallel Workers” on page 3-13



3 Single Program Multiple Data (spmd)

Run Single Programs on Multiple Data Sets

3-2

In this section...

“Introduction” on page 3-2

“When to Use spmd” on page 3-2
“Define an spmd Statement” on page 3-3
“Display Output” on page 3-5

“MATLAB Path” on page 3-5

“Error Handling” on page 3-5

“spmd Limitations” on page 3-6

Introduction

The single program multiple data (spmd) language construct allows seamless interleaving
of serial and parallel programming. The spmd statement lets you define a block of code to
run simultaneously on multiple workers. Variables assigned inside the spmd statement on
the workers allow direct access to their values from the client by reference via Composite
objects.

This chapter explains some of the characteristics of spmd statements and Composite
objects.

When to Use spmd

The “single program” aspect of spmd means that the identical code runs on multiple
workers. You run one program in the MATLAB client, and those parts of it labeled as spmd
blocks run on the workers. When the spmd block is complete, your program continues
running in the client.

The “multiple data” aspect means that even though the spmd statement runs identical
code on all workers, each worker can have different, unique data for that code. So
multiple data sets can be accommodated by multiple workers.

Typical applications appropriate for spmd are those that require running simultaneous
execution of a program on multiple data sets, when communication or synchronization is
required between the workers. Some common cases are:
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» Programs that take a long time to execute — spmd lets several workers compute
solutions simultaneously.

* Programs operating on large data sets — spmd lets the data be distributed to multiple
workers.

Define an spmd Statement

The general form of an spmd statement is:

spmd
<statements>
end

Note If a parallel pool is not running, spmd creates a pool using your default cluster
profile, if your parallel preferences are set accordingly.

The block of code represented by <statements> executes in parallel simultaneously on
all workers in the parallel pool. If you want to limit the execution to only a portion of
these workers, specify exactly how many workers to run on:

spmd (n)
<statements>
end

This statement requires that n workers run the spmd code. n must be less than or equal
to the number of workers in the open parallel pool. If the pool is large enough, but n
workers are not available, the statement waits until enough workers are available. If n is
0, the spmd statement uses no workers, and runs locally on the client, the same as if there
were not a pool currently running.

You can specify a range for the number of workers:
spmd (m,n)

<statements>
end

In this case, the spmd statement requires a minimum of m workers, and it uses a
maximum of n workers.

3-3
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If it is important to control the number of workers that execute your spmd statement, set
the exact number in the cluster profile or with the spmd statement, rather than using a
range.

For example, create a random matrix on three workers:

spmd (3)
R = rand(4,4);
end

Note All subsequent examples in this chapter assume that a parallel pool is open and
remains open between sequences of spmd statements.

Unlike a parfor-loop, the workers used for an spmd statement each have a unique value
for Labindex. This lets you specify code to be run on only certain workers, or to
customize execution, usually for the purpose of accessing unique data.

For example, create different sized arrays depending on labindex:

spmd (3)
if labindex==1
R = rand(9,9);
else
R = rand(4,4);
end
end

Load unique data on each worker according to labindex, and use the same function on
each worker to compute a result from the data:

spmd (3)
labdata = load(['datafile ' num2str(labindex) '.ascii'l])
result = MyFunction(labdata)

end

The workers executing an spmd statement operate simultaneously and are aware of each
other. As with a communicating job, you are allowed to directly control communications
between the workers, transfer data between them, and use codistributed arrays among
them.

For example, use a codistributed array in an spmd statement:



Run Single Programs on Multiple Data Sets

spmd (3)
RR = rand (30, codistributor());
end

Each worker has a 30-by-10 segment of the codistributed array RR. For more information
about codistributed arrays, see “Working with Codistributed Arrays” on page 5-5.

Display Output

When running an spmd statement on a parallel pool, all command-line output from the
workers displays in the client Command Window. Because the workers are MATLAB
sessions without displays, any graphical output (for example, figure windows) from the
pool does not display at all.

MATLAB Path

All workers executing an spmd statement must have the same MATLAB search path as the
client, so that they can execute any functions called in their common block of code.
Therefore, whenever you use cd, addpath, or rmpath on the client, it also executes on
all the workers, if possible. For more information, see the parpool reference page. When
the workers are running on a different platform than the client, use the function
pctRunONnA1l to properly set the MATLAB path on all workers.

Error Handling

When an error occurs on a worker during the execution of an spmd statement, the error is
reported to the client. The client tries to interrupt execution on all workers, and throws
an error to the user.

Errors and warnings produced on workers are annotated with the worker ID (labindex)
and displayed in the client’s Command Window in the order in which they are received by
the MATLAB client.

The behavior of lastwarn is unspecified at the end of an spmd if used within its body.
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spmd Limitations
Nested Functions

Inside a function, the body of an spmd statement cannot reference a nested function.
However, it can call a nested function by means of a variable defined as a function handle
to the nested function.

Because the spmd body executes on workers, variables that are updated by nested
functions called inside an spmd statement are not updated in the workspace of the outer
function.

Nested spmd Statements

The body of an spmd statement cannot directly contain another spmd. However, it can call
a function that contains another spmd statement. The inner spmd statement does not run
in parallel in another parallel pool, but runs serially in a single thread on the worker
running its containing function.

Nested parfor-Loops

An spmd statement cannot contain a parfor-loop, and the body of a parfor-loop cannot
contain an spmd statement. The reason is that workers cannot start or access further
parallel pools.

break, continue, and return Statements

The body of an spmd statement cannot contain break, continue, or return statements.
Consider parfeval or parfevalOnAll instead of spmd, because you can use cancel on
them.

Global and Persistent Variables

The body of an spmd statement cannot contain global or persistent variable
declarations. The reason is that these variables are not synchronized between workers.
You can use global or persistent variables within functions, but their value is only
visible to the worker that creates them. Instead of global variables, it is a better
practice to use function arguments to share values.

Anonymous Functions

The body of an spmd statement cannot define an anonymous function. However, it can
reference an anonymous function by means of a function handle.



See Also

load Functions

The syntaxes of Load that do not assign to an output structure are not supported inside
spmd statements. Inside spmd, always assign the output of load to a structure.

nargin or nargout Functions

The following uses are not supported inside spmd statements:

* Using nargin or nargout without a function argument

* Using narginchk or nargoutchk to validate the number of input or output
arguments in a call to the function that is currently executing

The reason is that workers do not have access to the workspace of the MATLAB desktop.
To work around this, call these functions before spmd.

myFunction('a','b")

function myFunction(a,b)
nin = nargin;
spmd

X = labindex*nin;
end
end

P-Code Scripts

You can call P-code script files from within an spmd statement, but P-code scripts cannot
contain an spmd statement. To work around this, use a P-code function instead of a P-code
script.

ans Variable
References to the ans variable defined outside an spmd statement are not supported

inside the spmd statement. Inside the body of an spmd statement, you must assign the
ans variable before you use it.

See Also
spmd | Composite | parfeval | parfevalOnAll | parfor
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More About

. “Ensure Transparency in parfor-Loops or spmd Statements” on page 2-62
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Access Worker Variables with Composites

In this section...

“Introduction to Composites” on page 3-9

“Create Composites in spmd Statements” on page 3-9
“Variable Persistence and Sequences of spmd” on page 3-11
“Create Composites Outside spmd Statements” on page 3-12

Introduction to Composites

Composite objects in the MATLAB client session let you directly access data values on the
workers. Most often you assigned these variables within spmd statements. In their display
and usage, Composites resemble cell arrays. There are two ways to create Composites:

* Use the Composite function on the client. Values assigned to the Composite elements
are stored on the workers.

* Define variables on workers inside an spmd statement. After the spmd statement, the
stored values are accessible on the client as Composites.

Create Composites in spmd Statements

When you define or assign values to variables inside an spmd statement, the data values
are stored on the workers.

After the spmd statement, those data values are accessible on the client as Composites.
Composite objects resemble cell arrays, and behave similarly. On the client, a Composite
has one element per worker. For example, suppose you create a parallel pool of three
local workers and run an spmd statement on that pool:

parpool('local',3)

spmd % Uses all 3 workers
MM = magic(labindex+2); % MM is a variable on each worker
end
MM{1} % In the client, MM is a Composite with one element per worker

8 1 6
3 5 7
4 9 2

3-9
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MM{2}
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

A variable might not be defined on every worker. For the workers on which a variable is
not defined, the corresponding Composite element has no value. Trying to read that
element throws an error.

spmd
if labindex > 1
HH = rand(4);
end
end
HH

Lab 1: No data
Lab 2: class
Lab 3: class

(4 4]
(4 4]

double, size
double, size

You can also set values of Composite elements from the client. This causes a transfer of
data, storing the value on the appropriate worker even though it is not executed within an
spmd statement:

MM{3} = eye(4);

In this case, MM must already exist as a Composite, otherwise MATLAB interprets it as a
cell array.

Now when you do enter an spmd statement, the value of the variable MM on worker 3 is as
set:

spmd
if labindex == 3, MM, end
end

Lab 3:
MM =

[ocNoNoN ]
[ocNoN TNO]
ol NoNO]
[l cNoNO]
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Data transfers from worker to client when you explicitly assign a variable in the client
workspace using a Composite element:

M = MM{1} % Transfer data from worker 1 to variable M on the client

8 1 6
3 5 7
4 9 2

Assigning an entire Composite to another Composite does not cause a data transfer.
Instead, the client merely duplicates the Composite as a reference to the appropriate data
stored on the workers:

NN = MM % Set entire Composite equal to another, without transfer

However, accessing a Composite’s elements to assign values to other Composites does
result in a transfer of data from the workers to the client, even if the assignment then
goes to the same worker. In this case, NN must already exist as a Composite:

NN{1} = MM{1} % Transfer data to the client and then to worker
When finished, you can delete the pool:
delete(gcp)

Variable Persistence and Sequences of spmd

The values stored on the workers are retained between spmd statements. This allows you
to use multiple spmd statements in sequence, and continue to use the same variables
defined in previous spmd blocks.

The values are retained on the workers until the corresponding Composites are cleared
on the client, or until the parallel pool is deleted. The following example illustrates data
value lifespan with spmd blocks, using a pool of four workers:

parpool('local',k4)

spmd

AA = labindex; % Initial setting
end
AA(:) % Composite

[1]
[2]

3-11
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[3]

[4]
spmd

AA = AA * 2; % Multiply existing value
end

AA(:) % Composite

clear AA % Clearing in client also clears on workers
spmd; AA = AA * 2; end % Generates error

delete(gcp)

Create Composites Outside spmd Statements

The Composite function creates Composite objects without using an spmd statement.
This might be useful to prepopulate values of variables on workers before an spmd
statement begins executing on those workers. Assume a parallel pool is already running:

PP = Composite()

By default, this creates a Composite with an element for each worker in the parallel pool.
You can also create Composites on only a subset of the workers in the pool. See the
Composite reference page for more details. The elements of the Composite can now be
set as usual on the client, or as variables inside an spmd statement. When you set an
element of a Composite, the data is immediately transferred to the appropriate worker:

for ii = 1l:numel(PP)
PP{ii} = ii;
end
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Distributing Arrays to Parallel Workers

In this section...

“Using Distributed Arrays to Partition Data Across Workers” on page 3-13

“Load Distributed Arrays in Parallel Using datastore” on page 3-13

“Alternative Methods for Creating Distributed and Codistributed Arrays” on page 3-16

Using Distributed Arrays to Partition Data Across Workers

Depending on how your data fits in memory, choose one of the following methods:

* Ifyour data is currently in the memory of your local machine, you can use the
distributed function to distribute an existing array from the client workspace to the
workers of a parallel pool. This option can be useful for testing or before performing
operations which significantly increase the size of your arrays, such as repmat.

* Ifyour data does not fit in the memory of your local machine, but does fit in the
memory of your cluster, you can use datastore with the distributed function to
read data into the memory of the workers of a parallel pool.

* Ifyour data does not fit in the memory of your cluster, you can use datastore with
tall arrays to partition and process your data in chunks. See also “Big Data Workflow
Using Tall Arrays and Datastores” on page 6-58.

Load Distributed Arrays in Parallel Using datastore

If your data does not fit in the memory of your local machine, but does fit in the memory
of your cluster, you can use datastore with the distributed function to create
distributed arrays and partition the data among your workers.

This example shows how to create and load distributed arrays using datastore. Create a
datastore using a tabular file of airline flight data. This data set is too small to show equal
partitioning of the data over the workers. To simulate a large data set, artificially increase
the size of the datastore using repmat.

files = repmat({'airlinesmall.csv'}, 10, 1);
ds = tabularTextDatastore(files);

Select the example variables.

3-13
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ds.SelectedVariableNames = {'DepTime', 'DepDelay'};
ds.TreatAsMissing = 'NA';

Create a distributed table by reading the datastore in parallel. Partition the datastore
with one partition per worker. Each worker then reads all data from the corresponding
partition. The files must be in a shared location that is accessible by the workers.

dt = distributed(ds);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Display summary information about the distributed table.

summary (dt)

Variables:

DepTime: 1,235,230x1 double

Values:
min 1
max 2505

NaNs 23,510

DepDelay: 1,235,230x1 double

Values:
min -1036
max 1438

NaNs 23,510
Determine the size of the tall table.
size(dt)

ans =
1235230 2

Return the first few rows of dt.
head(dt)

ans =

DepTime DepDelay

3-14
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642
1021
2055
1332

629
1446

928

859
1833
1041

Finally, check how much data each worker has loaded.

spmd, dt,

Lab 1:

This worker stores

12

1
20
12
-1
63
-2
-1

3

1

end

LocalPart:

Codistributor:

Lab 2:

This worker stores

LocalPart:

Codistributor:

Lab 3:

This worker stores

LocalPart:

Codistributor:

Lab 4:

This worker stores

LocalPart:

Codistributor:

dt2(1:370569,:).

[370569%x2 table]
[1x1 codistributorld]

dt2(370570:617615, :).

[247046%x2 table]
[1x1 codistributorld]

dt2(617616:988184, :).

[370569%x2 table]
[1x1 codistributorld]

dt2(988185:1235230,:).

[247046%x2 table]
[1x1 codistributorld]
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Note that the data is partitioned equally over the workers. For more details on
datastore, see “What Is a Datastore?” (MATLAB)

For more details about workflows for big data, see “Choose a Parallel Computing
Solution” on page 1-20.

Alternative Methods for Creating Distributed and
Codistributed Arrays

If your data fits in the memory of your local machine, you can use distributed arrays to
partition the data among your workers. Use the distributed function to create a
distributed array in the MATLAB client, and store its data on the workers of the open
parallel pool. A distributed array is distributed in one dimension, and as evenly as
possible along that dimension among the workers. You cannot control the details of
distribution when creating a distributed array.

You can create a distributed array in several ways:

* Use the distributed function to distribute an existing array from the client
workspace to the workers of a parallel pool.

* Use any of the distributed functions to directly construct a distributed array on the
workers. This technique does not require that the array already exists in the client,
thereby reducing client workspace memory requirements. Functions include
eye(_  ,'distributed') and rand(_ _ , 'distributed'). For a full list, see the
distributed object reference page.

* Create a codistributed array inside an spmd statement, and then access it as a
distributed array outside the spmd statement. This technique lets you use distribution
schemes other than the default.

The first two techniques do not involve spmd in creating the array, but you can use spmd
to manipulate arrays created this way. For example:

Create an array in the client workspace, and then make it a distributed array.

parpool('local',2) % Create pool
W = ones(6,6);
W = distributed(W); % Distribute to the workers
spmd

T = W*2; Calculation performed on workers, in parallel.
T and W are both codistributed arrays here.

%
%

end
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T % View results in client.
whos % T and W are both distributed arrays here.
delete(gcp) % Stop pool

Alternatively, you can use the codistributed function, which allows you to control more
options such as dimensions and partitions, but is often more complicated. You can create
a codistributed array by executing on the workers themselves, either inside an spmd
statement, in pmode, or inside a communicating job. When creating a codistributed
array, you can control all aspects of distribution, including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of perspective.
Codistributed arrays are partitioned among the workers from which you execute code to
create or manipulate them. When you create a distributed array in the client, you can
access it as a codistributed array inside an spmd statement. When you create a
codistributed array in an spmd statement, you can access it as a distributed array in the
client. Only spmd statements let you access the same array data from two different
perspectives.

You can create a codistributed array in several ways:

* Use the codistributed function inside an spmd statement, a communicating job, or
pmode to codistribute data already existing on the workers running that job.

* Use any of the codistributed functions to directly construct a codistributed array on
the workers. This technique does not require that the array already exists in the
workers. Functions include eye(  , 'codistributed') and
rand(__ ,‘'codistributed'). For a full list, see the codistributed object
reference page.

* Create a distributed array outside an spmd statement, then access it as a codistributed
array inside the spmd statement running on the same parallel pool.

Create a codistributed array inside an spmd statement using a nondefault distribution
scheme. First, define 1-D distribution along the third dimension, with 4 parts on worker 1,
and 12 parts on worker 2. Then create a 3-by-3-by-16 array of zeros.

parpool('local',2) % Create pool

spmd
codist = codistributorld(3,[4,12]);
Z zeros(3,3,16,codist);
Z Z + labindex;

end
Z % View results in client.
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% Z 1s a distributed array here.

delete(gcp) % Stop pool

For more details on codistributed arrays, see “Working with Codistributed Arrays” on
page 5-5.

See Also

codistributed | datastore | distributed | eye | rand | repmat | spmd | tall

Related Examples

“Run MATLAB Functions with Distributed Arrays” on page 5-24
“Big Data Workflow Using Tall Arrays and Datastores” on page 6-58
“What Is a Datastore?” (MATLAB)

“Choose a Parallel Computing Solution” on page 1-20

“Use Tall Arrays on a Parallel Pool” on page 6-61

More About

“Datastore” (MATLAB)
“Tall Arrays” (MATLAB)



Interactive Parallel Computation
with pmode

This chapter describes interactive pmode in the following sections:

* “pmode Versus spmd” on page 4-2

* “Run Communicating Jobs Interactively Using pmode” on page 4-3
* “Parallel Command Window” on page 4-10

* “Running pmode Interactive Jobs on a Cluster” on page 4-15

* “Plotting Distributed Data Using pmode” on page 4-16

* “pmode Limitations and Unexpected Results” on page 4-18

* “pmode Troubleshooting” on page 4-19
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pmode Versus spmd

4-2

pmode lets you work interactively with a communicating job running simultaneously on
several workers. Commands you type at the pmode prompt in the Parallel Command
Window are executed on all workers at the same time. Each worker executes the
commands in its own workspace on its own variables.

The way the workers remain synchronized is that each worker becomes idle when it
completes a command or statement, waiting until all the workers working on this job have
completed the same statement. Only when all the workers are idle, do they then proceed
together to the next pmode command.

In contrast to spmd, pmode provides a desktop with a display for each worker running the
job, where you can enter commands, see results, access each worker's workspace, etc.
What pmode does not let you do is to freely interleave serial and parallel work, like spmd
does. When you exit your pmode session, its job is effectively destroyed, and all
information and data on the workers is lost. Starting another pmode session always
begins from a clean state.
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Run Communicating Jobs Interactively Using pmode

This example uses a local scheduler and runs the workers on your local MATLAB client
machine. It does not require an external cluster or scheduler. The steps include the
pmode prompt (P>>) for commands that you type in the Parallel Command Window.

1

Start the pmode with the pmode command.

pmode start local 4

This starts four local workers, creates a communicating job to run on those workers,
and opens the Parallel Command Window.

) Parallel Command Window

Fie Edi Desklop ‘window Help

= Ez]=N]

Lab 1~ LsbZv

Lab3~ Labd +

You can control where the command history appears. For this exercise, the position is
set by clicking Window > History Position > Above Prompt, but you can set it
according to your own preference.

To illustrate that commands at the pmode prompt are executed on all workers, ask
for help on a function.

P>> help magic
Set a variable at the pmode prompt. Notice that the value is set on all the workers.

P>> x = pi

4-3
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) Parallel Command Window

Fie Edi Deskop Window Help

=]l ElE i
Labi~ b2+
P>>x = pi P>>x = pi
x = x =
3.1416 3.1416
Lah3~ - Labd~
P>>x = pi P>>x = pi
x = x =
3.141¢ 3.1416
x = pi

4 Avariable does not necessarily have the same value on every worker. The labindex
function returns the ID particular to each worker working on this communicating job.
In this example, the variable x exists with a different value in the workspace of each
worker.
P>> x = labindex

5 Return the total number of workers working on the current communicating job with
the numlabs function.
P>> all = numlabs

6 Create a replicated array on all the workers.

P>> segment = [1 2; 3 4; 5 6]
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) Parallel Command Window =]
Fie Edi Deskop Window Help ~
=]l ElE i
L1~ bz~
B>> segment = [1 2; 3 4; 5 6] 2l| B>> segment = [1 2; 3 4; 5 6] =
segment = segment =
1 2 1 2
3 4 3 4
5 6 5 6
Laba~ h Lsba~ 3
P>> segment = [1 2; 3 4; 5 6] 2| p>> segment = [1 2; 3 47 5 6] C|
segment = segment =
1 2 1 2
3 4 3 4
5 6 5 [

segment = [1 27 3 4; 5 6]

P>>

Assign a unique value to the array on each worker, dependent on the worker number

(Labindex). With a different value on each worker, this is a variant array.

P>> segment = segment + 10*labindex

). Parallel Command Window =[o]
Fie Edi Desktop ‘indow Help ~
(=] HEO
b1~ Lb2~
P>> segment = segment + 10*labindex =2l| p>> segment = segment + l0*labindex =
segment = segment =
11 12 21 22
13 14 23 24
15 16 25 26
(%R b~
P>> segment = segment + 10*labindex 2| > segment = segment + 10*labindex C
segment = segment =
31 32 41 42
33 34 43 44
35 36 45 46
segment = [1 2; 3 4; 5 6]
segment = segment + 1l0*labindex
B>>
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10

Until this point in the example, the variant arrays are independent, other than having
the same name. Use the codistributed.build function to aggregate the array
segments into a coherent array, distributed among the workers.

P>> codist = codistributorld(2, [2 2 2 2], [3 8])
P>> whole = codistributed.build(segment, codist)

This combines four separate 3-by-2 arrays into one 3-by-8 codistributed array. The
codistributorld object indicates that the array is distributed along its second
dimension (columns), with 2 columns on each of the four workers. On each worker,
segment provided the data for the local portion of the whole array.

Now, when you operate on the codistributed array whole, each worker handles the
calculations on only its portion, or segment, of the array, not the whole array.

P>> whole = whole + 1000

Although the codistributed array allows for operations on its entirety, you can use the
getLocalPart function to access the portion of a codistributed array on a particular
worker.

P>> section = getlLocalPart(whole)

Thus, section is now a variant array because it is different on each worker.

). Parallel Command Window 19 [=]
File Edit Desktop Window Help ~
= Ez]=N]
Lab 1w Lsb 2w
. =l . |
section = section =
1011 1012 . 1021 1022
1013 1014 1023 1024
1015 1016 1025 1026
JHI ;lz‘_d ] ;lz‘
Lab3~ = Lab4~ =
= C|
section = section =
1031 1032 . 1041 1042
1033 1034 1043 1044
1035 1036 1045 1046
H — ;lz‘;l 7 ;lz‘
codist = codistributorld(2, [2 2 2 2], [3 8]); [
whole = codistributed.build(segment,codist)
whole = whole + 1000
section = getLocalPart (whole) j
P>>
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12

13

If you need the entire array in one workspace, use the gather function.
P>> combined = gather(whole)

Notice, however, that this gathers the entire array into the workspaces of all the
workers. See the gather reference page for the syntax to gather the array into the
workspace of only one worker.

Because the workers ordinarily do not have displays, if you want to perform any
graphical tasks involving your data, such as plotting, you must do this from the client
workspace. Copy the array to the client workspace by typing the following commands
in the MATLAB (client) Command Window.

pmode lab2client combined 1

Notice that combined is now a 3-by-8 array in the client workspace.
whos combined

To see the array, type its name.

combined

Many matrix functions that might be familiar can operate on codistributed arrays. For
example, the eye function creates an identity matrix. Now you can create a
codistributed identity matrix with the following commands in the Parallel Command
Window.

P>> distobj = codistributorld();
P>> I = eye(6, distobj)
P>> getLocalPart(I)

Calling the codistributorld function without arguments specifies the default
distribution, which is by columns in this case, distributed as evenly as possible.
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). Parallel Command Window [Olx]
File Edit Desktop Window Help ~
=]l ElE i
Lab 1+ Lb2~
ans = Al ans = Al
1 0 0 0
0 1 0 0
0 0 i 1 0
0 0 0 1
0 0 0 0
0 0 0 0
. . . : o
b2~ Lebd~
ans = B ans = |
0 0
0 0
0 i Y
0 0
1 0
0 1
0| | LIJ ‘ ;Ij
distobj = codistributorld() ; .
I = eye(6, distobj)
getLocalPart (I) &
P>>

If you require distribution along a different dimension, you can use the

redistribute function. In this example, the argument 1 to codistributorld

specifies distribution of the array along the first dimension (rows).

P>> distobj = codistributorld(1);
P>> I = redistribute(I, distobj)
P>> getLocalPart(I)

) Parallel Command Window JH[=1E3
Fie Edit Desktop Window Help bl
= El=ls]
Lab 1+ b2~
ans = Hlans = 4
1 0 0 0 0 0 - 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0
K] | ;lz‘ K] | ;lj
b2~ Labd~
ans = Alans = =l
0 0 0 0 1 0 _, 0 0 0 0 0 1
H | i
distobj = codistributorld(1l); E
I = redistribute(I, distocbj) k
getLocalPart (I) 31
P>>
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15 Exit pmode and return to the regular MATLAB desktop.

P>> pmode exit
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Parallel Command Window

When you start pmode on your local client machine with the command

pmode start local 4

four workers start on your local machine and a communicating job is created to run on
them. The first time you run pmode with these options, you get a tiled display of the four
workers.

Clear all output

windows
Show commands e :
in lab output —™ =2 _ BB 0
" ans = | " ans = |
1 0 0 0
0 1 0 0
0 0 | 1 0
0 0 0 1
Lab outputs 0 0 J 0 0 J
in tiled ° 0 i ° 0 =
arrangement = ' =
ans = = | ans = A
0 0
0 0
0 i Y
0 0
1 0
0 1
J | sl o
Command distobj = codistributorild(); o
H r = 7
hlStOfy I = eye(6, distobj)
Command getLocalPart (I) E'
line —_ 22

The Parallel Command Window offers much of the same functionality as the MATLAB
desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click, you see the
following context menu.
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R S S NI SO S Y

distobj = codistributor() ;

I = eye(6, distobj)
Undo Delete

I = redistribute(r, distek
cut Crkac

p>> Copy

Select All

Evaluate Selection F9
Show Output

Set Enmor Status

Create bi-File

Delete Selection

Clear Pldode Command History

You have several options for how to arrange the tiles showing your worker outputs.
Usually, you will choose an arrangement that depends on the format of your data. For
example, the data displayed until this point in this section, as in the previous figure, is
distributed by columns. It might be convenient to arrange the tiles side by side.

Click tiling icon

. E?Q o / Select layout
T AN

.

Cancel

This arrangement results in the following figure, which might be more convenient for
viewing data distributed by columns.

). Parallel Command Window 19 [ B3
Fle Edit Desklop Windaw Help ~
Bl [E:)fr=lm
Lab1~ Lab2~ L3~ Lab4~
localPart(I) = 4 localPart (I) = 4 localPart (I) = 4 localPart (I) = -
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 J 0 0 J 0 J 1 J
Ly sl pflw sl st
distobj = codistributor() ;
I = eye(6, distobj)
P>> |
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Alternatively, if the data is distributed by rows, you might want to stack the worker tiles
vertically. For the following figure, the data is reformatted with the command

P>> distobj = codistributor('1ld',1);
P>> I = redistribute(I, distobj)

When you rearrange the tiles, you see the following.

) Parallel Command Window (-[o[x]
Fle Edt Desktop Window Help ~

=] Bo0
Lablv
localkPart (I) = .‘
1 0 0 0 0 0 H
0 1 0 0 0 0
- : |
Localpart (1) = [ x|
0 0 1 0 0 0 =
0 0 0 1 0 0 'jb
b3~ =
- A\
localpart (I) = .
) 0 0 0 1 0 \_‘ Select vertical
—— . i arrangement
localPart (I) = -
0 0 0 0 0 1
|
distobj = codistributor() ; .
I = eye(6, distobj) Drag to adJUSt
distobj = codistributor('ld',1); H H
I = redistribute(I, distobj) tlle Slzes
P>>

You can control the relative positions of the command window and the worker output. The
following figure shows how to set the output to display beside the input, rather than
above it.
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) Parallel Command Window =1
Fie Edt Desktop | Window Help :.
distok  TileDutput » u ’EG 0
_ . TabOupu » TS
I = & gl Dupuwindow | - |
itio localPart (I) =
I = re ((mse Al esuments: E:jghl P ; 1 0 0 o o o
ave Promp
0 Command Window Ctikd  Popup g E g e e Cm
7 Parallel Command Window Cil+7  Hidden i |
ah2w
localPart (I) = [
0 0 1 o] o] 0
0 0 0 1 0 0
|
Lab3w
=l
localPart (I) =
0 0 0 0 1 0
.
|
Labd
|
localPart (I) =
0 0 o] 0 0 1
|
=

P>

You can choose to view the worker outputs by tabs.

1. Select tabbed

display
) Parallel Command Window 19 [=] B
File Edit Desktop Window Help

Lab3~ |_] mo o
3. Select labs _#f 2] l_;l
shown in / localPart (I) =
this tab 0 0 0 0 1 0 |
=
EEK)

distobj = codistributor () ;
I = eye(6, distobj)
2. Select tab distobj = codistributor('ld’',1);
I = redistribute(I, distobj)
P>>

You can have multiple workers send their output to the same tile or tab. This allows you to
have fewer tiles or tabs than workers.
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— Click tabbed output
{f/ Select only two tabs

In this case, the window provides shading to help distinguish the outputs from the various

workers.
Fie Edt Deskiop Window Help ~
Labs 24~ ([ ] BE 0
2 localPart (I) = |
0 0 1 0 0 0
. 0 0 0 1 0 0
Multiple labs
in same tab
3 localPart(I) =
0 0 0 0 1 0
=
|
e}
distobj = codistributor('ld',1) ; =
I = redistribute(I, distobj) j

P>>
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Running pmode Interactive Jobs on a Cluster

When you run pmode on a cluster of workers, you are running a job that is much like any
other communicating job, except it is interactive. The cluster can be heterogeneous, but
with certain limitations described at System Requirements; carefully locate your
scheduler on that page and note that pmode sessions run as jobs described as “parallel
applications that use inter-worker communication.”

Many of the job's properties are determined by the cluster profile. For more details about
creating and using profiles, see “Discover Clusters and Use Cluster Profiles” on page 6-
15.

The general form of the command to start a pmode session is
pmode start <profile-name> <num-workers>

where <profile-name> is the name of the cluster profile you want to use, and <num-
workers> is the number of workers you want to run the pmode job on. If <num-
workers> is omitted, the number of workers is determined by the profile. Coordinate
with your system administrator when creating or using a profile.

If you omit <profile-name>, pmode uses the default profile (see the
parallel.defaultClusterProfile reference page).

For details on all the command options, see the pmode reference page.
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Plotting Distributed Data Using pmode

4-16

Because the workers running a job in pmode are MATLAB sessions without displays, they
cannot create plots or other graphic outputs on your desktop.

When working in pmode with codistributed arrays, one way to plot a codistributed array
is to follow these basic steps:

Use the gather function to collect the entire array into the workspace of one worker.

2  Transfer the whole array from any worker to the MATLAB client with pmode
lab2client.

3  Plot the data from the client workspace.
The following example illustrates this technique.

Create a 1-by-100 codistributed array of 0s. With four workers, each has a 1-by-25
segment of the whole array.

P>> D = zeros(1,100,codistributorld())

Lab 1: This lab stores D(1:25)

Lab 2: This lab stores D(26:50)
Lab 3: This lab stores D(51:75)
Lab 4: This lab stores D(76:100)

Use a for-loop over the distributed range to populate the array so that it contains a sine
wave. Each worker does one-fourth of the array.

P>> for i = drange(1:100)

D(i) = sin(i*2*pi/100);
end;

Gather the array so that the whole array is contained in the workspace of worker 1.
P>> P = gather(D, 1);

Transfer the array from the workspace of worker 1 to the MATLAB client workspace, then
plot the array from the client. Note that both commands are entered in the MATLAB
(client) Command Window.

pmode lab2client P 1
plot(P)
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This is not the only way to plot codistributed data. One alternative method, especially
useful when running noninteractive communicating jobs, is to plot the data to a file, then
view it from a later MATLAB session.
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pmode Limitations and Unexpected Results

4-18

Using Graphics in pmode
Displaying a GUI

The workers that run the tasks of a communicating job are MATLAB sessions without
displays. As a result, these workers cannot display graphical tools and so you cannot do
things like plotting from within pmode. The general approach to accomplish something
graphical is to transfer the data into the workspace of the MATLAB client using

pmode lab2client var labindex
Then use the graphical tool on the MATLAB client.
Using Simulink Software

Because the workers running a pmode job do not have displays, you cannot use Simulink
software to edit diagrams or to perform interactive simulation from within pmode. If you
type simulink at the pmode prompt, the Simulink Library Browser opens in the
background on the workers and is not visible.

You can use the sim command to perform noninteractive simulations in parallel. If you
edit your model in the MATLAB client outside of pmode, you must save the model before
accessing it in the workers via pmode; also, if the workers had accessed the model
previously, they must close and open the model again to see the latest saved changes.
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pmode Troubleshooting

In this section...

“Connectivity Testing” on page 4-19
“Hostname Resolution” on page 4-19
“Socket Connections” on page 4-19

Connectivity Testing

For testing connectivity between the client machine and the machines of your compute
cluster, you can use Admin Center. For more information about Admin Center, including
how to start it and how to test connectivity, see “Start Admin Center” (MATLAB Parallel
Server) and “Test Connectivity” (MATLAB Parallel Server).

Hostname Resolution

If a worker cannot resolve the hostname of the computer running the MATLAB client, use
pctconfig to change the hostname by which the client machine advertises itself.

Socket Connections

If a worker cannot open a socket connection to the MATLAB client, try the following:

» Use pctconfig to change the hostname by which the client machine advertises itself.

* Make sure that firewalls are not preventing communication between the worker and
client machines.

* Use pctconfig to change the client's pmodeport property. This determines the port
that the workers will use to contact the client in the next pmode session.
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Math with Codistributed Arrays

This chapter describes the distribution or partition of data across several workers, and
the functionality provided for operations on that data in spmd statements, communicating
jobs, and pmode. The sections are as follows.

* “Nondistributed Versus Distributed Arrays” on page 5-2

* “Working with Codistributed Arrays” on page 5-5

* “Looping Over a Distributed Range (for-drange)” on page 5-20

* “Run MATLAB Functions with Distributed Arrays” on page 5-24
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Nondistributed Versus Distributed Arrays

In this section...

“Introduction” on page 5-2
“Nondistributed Arrays” on page 5-2
“Codistributed Arrays” on page 5-4

Introduction

Many built-in data types and data structures supported by MATLAB software are also
supported in the MATLAB parallel computing environment. This includes arrays of any
number of dimensions containing numeric, character, logical values, cells, or structures.
In addition to these basic building blocks, the MATLAB parallel computing environment
also offers different types of arrays.

Nondistributed Arrays

When you create a nondistributed array, MATLAB constructs a separate array in the
workspace of each worker, using the same variable name on all workers. Any operation
performed on that variable affects all individual arrays assigned to it. If you display from
worker 1 the value assigned to this variable, all workers respond by showing the array of
that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in the workspace of
each worker:

* “Replicated Arrays” on page 5-2
* “Variant Arrays” on page 5-3

* “Private Arrays” on page 5-3
Replicated Arrays

A replicated array resides in the workspaces of all workers, and its size and content are
identical on all workers. When you create the array, MATLAB assigns it to the same
variable on all workers. If you display in spmd the value assigned to this variable, all
workers respond by showing the same array.

spmd, A = magic(3), end

5-2



Nondistributed Versus Distributed Arrays

WORKER 1 WORKER 2 WORKER 3 WORKER 4
| | |

8 1 6 | 8 1 6 | 8 1 6 | 8 1 6

3 5 7 | 3 5 7 ] 3 5 7] 3 5 7

4 9 2 | 4 9 2 | 4 9 2 | 4 9 2

Variant Arrays

A variant array also resides in the workspaces of all workers, but its content differs on
one or more workers. When you create the array, MATLAB assigns a different value to the
same variable on all workers. If you display the value assigned to this variable, all
workers respond by showing their version of the array.

spmd, A = magic(3) + labindex - 1, end

WORKER 1 WORKER 2 WORKER 3 WORKER 4
| | |

8 1 6 | 9 2 7 |1 3 8 |11 4 9

3 5 7 | 4 6 9 | 5 7 9 | 6 8 10

4 9 2 | 510 3 | 6 11 4 | 7 12 5

A replicated array can become a variant array when its value becomes unique on each
worker.

spmd
B
B

magic(3); %sreplicated on all workers
B + labindex; %now a variant array, different on each worker

end
Private Arrays

A private array is defined on one or more, but not all workers. You could create this array
by using labindex in a conditional statement, as shown here:

spmd
if labindex >= 3, A = magic(3) + labindex - 1, end
end
WORKER 1 WORKER 2 WORKER 3 WORKER 4
I I I
A is | A is | 186 3 8 | 11 4 9
undefined | undefined | 5 7 9 | 6 8 10
| 6 11 4 | 7 12 5
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Codistributed Arrays

With replicated and variant arrays, the full content of the array is stored in the workspace
of each worker. Codistributed arrays, on the other hand, are partitioned into segments,
with each segment residing in the workspace of a different worker. Each worker has its
own array segment to work with. Reducing the size of the array that each worker has to
store and process means a more efficient use of memory and faster processing, especially
for large data sets.

This example distributes a 3-by-10 replicated array A across four workers. The resulting
array D is also 3-by-10 in size, but only a segment of the full array resides on each worker.

spmd
A= [11:20; 21:30; 31:40];
D = codistributed(A);
getLocalPart(D)
end
WORKER 1 WORKER 2  WORKER 3  WORKER 4
I I I
11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40

For more details on using codistributed arrays, see “Working with Codistributed Arrays”
on page 5-5.
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Working with Codistributed Arrays

In this section...
“How MATLAB Software Distributes Arrays” on page 5-5
“Creating a Codistributed Array” on page 5-7

“Local Arrays” on page 5-10

“Obtaining information About the Array” on page 5-11
“Changing the Dimension of Distribution” on page 5-13
“Restoring the Full Array” on page 5-13

“Indexing into a Codistributed Array” on page 5-14

“2-Dimensional Distribution” on page 5-16

How MATLAB Software Distributes Arrays

When you distribute an array to a number of workers, MATLAB software partitions the
array into segments and assigns one segment of the array to each worker. You can
partition a two-dimensional array horizontally, assigning columns of the original array to
the different workers, or vertically, by assigning rows. An array with N dimensions can be
partitioned along any of its N dimensions. You choose which dimension of the array is to
be partitioned by specifying it in the array constructor command.

For example, to distribute an 80-by-1000 array to four workers, you can partition it either
by columns, giving each worker an 80-by-250 segment, or by rows, with each worker
getting a 20-by-1000 segment. If the array dimension does not divide evenly over the
number of workers, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns it to variable A.
In doing so, each worker creates an identical array in its own workspace and assigns it to
variable A, where A is local to that worker. The second command distributes A, creating a
single 80-by-1000 array D that spans all four workers. Worker 1 stores columns 1 through
250, worker 2 stores columns 251 through 500, and so on. The default distribution is by
the last nonsingleton dimension, thus, columns in this case of a 2-dimensional array.

spmd
A = zeros(80, 1000);
D = codistributed(A)
end
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Lab 1: This lab stores D(:,1:250).

Lab 2: This lab stores D(:,251:500).
Lab 3: This lab stores D(:,501:750).
Lab 4: This lab stores D(:,751:1000).

Each worker has access to all segments of the array. Access to the local segment is faster
than to a remote segment, because the latter requires sending and receiving data
between workers and thus takes more time.

How MATLAB Displays a Codistributed Array

For each worker, the MATLAB Parallel Command Window displays information about the
codistributed array, the local portion, and the codistributor. For example, an 8-by-8
identity matrix codistributed among four workers, with two columns on each worker,

displays like this:

>> spmd

IT = eye(8, 'codistributed')
end

Lab 1:

This lab stores II(:,1:2).
LocalPart: [8x2 doublel
Codistributor: [1x1 codistributorld]
Lab 2:
This lab stores II(:,3:4).
LocalPart: [8x2 doublel
Codistributor: [1x1 codistributorld]
Lab 3:
This lab stores II(:,5:6).
LocalPart: [8x2 doublel
Codistributor: [1x1 codistributorld]
Lab 4:
This lab stores II(:,7:8).
LocalPart: [8x2 doublel
Codistributor: [1x1 codistributorld]

To see the actual data in the local segment of the array, use the getLocalPart function.
How Much Is Distributed to Each Worker

In distributing an array of N rows, if N is evenly divisible by the number of workers,
MATLAB stores the same number of rows (N/numlabs) on each worker. When this
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number is not evenly divisible by the number of workers, MATLAB partitions the array as
evenly as possible.

MATLAB provides codistributor object properties called Dimension and Partition that
you can use to determine the exact distribution of an array. See “Indexing into a
Codistributed Array” on page 5-14 for more information on indexing with codistributed
arrays.

Distribution of Other Data Types

You can distribute arrays of any MATLAB built-in data type, and also numeric arrays that
are complex or sparse, but not arrays of function handles or object types.

Creating a Codistributed Array

You can create a codistributed array in any of the following ways:

* “Partitioning a Larger Array” on page 5-7 — Start with a large array that is
replicated on all workers, and partition it so that the pieces are distributed across the
workers. This is most useful when you have sufficient memory to store the initial
replicated array.

* “Building from Smaller Arrays” on page 5-8 — Start with smaller variant or
replicated arrays stored on each worker, and combine them so that each array
becomes a segment of a larger codistributed array. This method reduces memory
requirements as it lets you build a codistributed array from smaller pieces.

* “Using MATLAB Constructor Functions” on page 5-9 — Use any of the MATLAB
constructor functions like rand or zeros with a codistributor object argument. These
functions offer a quick means of constructing a codistributed array of any size in just
one step.

Partitioning a Larger Array

If you have a large array already in memory that you want MATLAB to process more
quickly, you can partition it into smaller segments and distribute these segments to all of
the workers using the codistributed function. Each worker then has an array that is a
fraction the size of the original, thus reducing the time required to access the data that is
local to each worker.

As a simple example, the following line of code creates a 4-by-8 replicated matrix on each
worker assigned to the variable A:
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spmd, A = [11:18; 21:28; 31:38; 41:48], end
A =
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the codistributed function to construct a single 4-by-8 matrix D that
is distributed along the second dimension of the array:

spmd
D = codistributed(A);
getLocalPart(D)
end
3: Local Part 4: Local Part

1: Local Part 2: Local Part

I I I
11 12 | 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Arrays A and D are the same size (4-by-8). Array A exists in its full size on each worker,
while only a segment of array D exists on each worker.

spmd, size(A), size(D), end

Examining the variables in the client workspace, an array that is codistributed among the
workers inside an spmd statement, is a distributed array from the perspective of the
client outside the spmd statement. Variables that are not codistributed inside the spmd,
are Composites in the client outside the spmd.

whos
Name Size Bytes C(lass
A 1x4 613 Composite
D 4x8 649 distributed

See the codistributed function reference page for syntax and usage information.
Building from Smaller Arrays

The codistributed function is less useful for reducing the amount of memory required
to store data when you first construct the full array in one workspace and then partition it
into distributed segments. To save on memory, you can construct the smaller pieces (local
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part) on each worker first, and then use codistributed.build to combine them into a
single array that is distributed across the workers.

This example creates a 4-by-250 variant array A on each of four workers and then uses
codistributor to distribute these segments across four workers, creating a 4-by-1000
codistributed array. Here is the variant array, A:

spmd

A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);
end

WORKER 1 WORKER 2 WORKER 3

1 2 ... 250 | 251 252 500 | 501 502 750 | etc.
251 252 ... 500 | 501 502 ... 750 | 751 752 1000 | etc.
501 502 ... 750 | 751 752 ...1000 | 1001 1002 1250 | etc.
751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 1500 | etc.

| | |

Now combine these segments into an array that is distributed by the first dimension
(rows). The array is now 16-by-250, with a 4-by-250 segment residing on each worker:

spmd

D = codistributed.build(A, codistributorld(1,[4 4 4 4]1,[16 2501]))
end
Lab 1:

This lab stores D(1:4,:).
LocalPart: [4x250 double]
Codistributor: [1x1 codistributorld]

whos

Name Size Bytes C(lass

A 1x4 613 Composite

D 16x250 649 distributed

You could also use replicated arrays in the same fashion, if you wanted to create a
codistributed array whose segments were all identical to start with. See the
codistributed function reference page for syntax and usage information.

Using MATLAB Constructor Functions

MATLAB provides several array constructor functions that you can use to build
codistributed arrays of specific values, sizes, and classes. These functions operate in the
same way as their nondistributed counterparts in the MATLAB language, except that they
distribute the resultant array across the workers using the specified codistributor object,
codist.

5-9



5 Math with Codistributed Arrays

Constructor Functions

The codistributed constructor functions are listed here. Use the codist argument
(created by the codistributor function: codist=codistributor()) to specify over
which dimension to distribute the array. See the individual reference pages for these
functions for further syntax and usage information.

eye(_ ,codist)
false( ,codist)
Inf(__ ,codist)
NaN ( ,codist)
ones ,codist)
rand ,codist)
randi(__ ,codist)
randn( ,codist)
true( ,codist)

zeros( ,codist)

[
(

codistributed.cell(m,n,...,codist)
codistributed.colon(a,d,b)
codistributed.linspace(m,n,...,codist)
codistributed.logspace(m,n,...,codist)
sparse(m,n,codist)
codistributed.speye(m,...,codist)
codistributed.sprand(m,n,density, codist)
codistributed.sprandn(m,n,density, codist)

Local Arrays

That part of a codistributed array that resides on each worker is a piece of a larger array.
Each worker can work on its own segment of the common array, or it can make a copy of
that segment in a variant or private array of its own. This local copy of a codistributed
array segment is called a local array.

Creating Local Arrays from a Codistributed Array

The getLocalPart function copies the segments of a codistributed array to a separate
variant array. This example makes a local copy L of each segment of codistributed array
D. The size of L shows that it contains only the local part of D for each worker. Suppose
you distribute an array across four workers:

spmd(4)
A = [1:80; 81:160; 161:240];
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D = codistributed(A);
size(D)
L = getLocalPart(D);
size(L)
end

returns on each worker:

3 80
3 20

Each worker recognizes that the codistributed array D is 3-by-80. However, notice that
the size of the local part, L, is 3-by-20 on each worker, because the 80 columns of D are
distributed over four workers.

Creating a Codistributed from Local Arrays

Use the codistributed.build function to perform the reverse operation. This
function, described in “Building from Smaller Arrays” on page 5-8, combines the local
variant arrays into a single array distributed along the specified dimension.

Continuing the previous example, take the local variant arrays L and put them together as
segments to build a new codistributed array X.
spmd
codist = codistributorld(2,[20 20 20 20],[3 80]);
X = codistributed.build(L, codist);
size(X)
end

returns on each worker:

3 80

Obtaining information About the Array

MATLAB offers several functions that provide information on any particular array. In
addition to these standard functions, there are also two functions that are useful solely
with codistributed arrays.

Determining Whether an Array Is Codistributed

The iscodistributed function returns a logical 1 (true) if the input array is
codistributed, and logical 0 (false) otherwise. The syntax is
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spmd, TF = iscodistributed(D), end
where D is any MATLAB array.
Determining the Dimension of Distribution

The codistributor object determines how an array is partitioned and its dimension of
distribution. To access the codistributor of an array, use the getCodistributor
function. This returns two properties, Dimension and Partition:

spmd, getCodistributor(X), end

Dimension: 2
Partition: [20 20 20 20]

The Dimension value of 2 means the array X is distributed by columns (dimension 2);
and the Partition value of [20 20 20 20] means that twenty columns reside on each
of the four workers.

To get these properties programmatically, return the output of getCodistributortoa
variable, then use dot notation to access each property:

spmd
C = getCodistributor(X);
part C.Partition
dim C.Dimension

end
Other Array Functions

Other functions that provide information about standard arrays also work on
codistributed arrays and use the same syntax.

* Tlength — Returns the length of a specific dimension.

* ndims — Returns the number of dimensions.

* numel — Returns the number of elements in the array.

* size — Returns the size of each dimension.

* 1is* — Many functions that have names beginning with 'is', such as ischar and
issparse.
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Changing the Dimension of Distribution

When constructing an array, you distribute the parts of the array along one of the array's
dimensions. You can change the direction of this distribution on an existing array using
the redistribute function with a different codistributor object.

Construct an 8-by-16 codistributed array D of random values distributed by columns on
four workers:

spmd
D = rand(8,16,codistributor());
size(getLocalPart(D))

end

returns on each worker:

8 4

Create a new codistributed array distributed by rows from an existing one already
distributed by columns:

spmd
X = redistribute(D, codistributorld(1));
size(getLocalPart(X))

end

returns on each worker:

2 16

Restoring the Full Array

You can restore a codistributed array to its undistributed form using the gather function.
gather takes the segments of an array that reside on different workers and combines
them into a replicated array on all workers, or into a single array on one worker.

Distribute a 4-by-10 array to four workers along the second dimension:

spmd, A = [11:20; 21:30; 31:40; 41:50], end
A =
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
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41 42 43 44 45 46 47 48 49 50

spmd, D = codistributed(A), end

WORKER 1 WORKER 2 WORKER 3 WORKER 4
11 12 13 |14 15 16 | 17 18 | 19 20
21 22 23 |24 25 26 | 27 28 | 29 30
31 32 33 |34 35 36 | 37 38 | 39 40
41 42 43 | 44 45 46 | 47 48 | 49 50

| | |

spmd, size(getLocalPart(D)), end

Lab 1:

4 3
Lab 2:

4 3
Lab 3:

4 2
Lab 4:

4 2

Restore the undistributed segments to the full array form by gathering the segments:

spmd, X = gather(D), end
X =
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, size(X), end
4 10

Indexing into a Codistributed Array

While indexing into a nondistributed array is fairly straightforward, codistributed arrays
require additional considerations. Each dimension of a nondistributed array is indexed
within a range of 1 to the final subscript, which is represented in MATLAB by the end
keyword. The length of any dimension can be easily determined using either the size or
length function.

5-14



Working with Codistributed Arrays

With codistributed arrays, these values are not so easily obtained. For example, the
second segment of an array (that which resides in the workspace of worker 2) has a
starting index that depends on the array distribution. For a 200-by-1000 array with a
default distribution by columns over four workers, the starting index on worker 2 is 251.
For a 1000-by-200 array also distributed by columns, that same index would be 51. As for
the ending index, this is not given by using the end keyword, as end in this case refers to
the end of the entire array; that is, the last subscript of the final segment. The length of
each segment is also not given by using the length or size functions, as they only
return the length of the entire array.

The MATLAB colon operator and end keyword are two of the basic tools for indexing
into nondistributed arrays. For codistributed arrays, MATLAB provides a version of the
colon operator, called codistributed.colon. This actually is a function, not a
symbolic operator like colon.

Note When using arrays to index into codistributed arrays, you can use only replicated or
codistributed arrays for indexing. The toolbox does not check to ensure that the index is
replicated, as that would require global communications. Therefore, the use of
unsupported variants (such as labindex) to index into codistributed arrays might create
unexpected results.

Example: Find a Particular Element in a Codistributed Array

Suppose you have a row vector of 1 million elements, distributed among several workers,
and you want to locate its element number 225,000. That is, you want to know what
worker contains this element, and in what position in the local part of the vector on that
worker. The globalIndices function provides a correlation between the local and global
indexing of the codistributed array.

D = rand(1,1le6, 'distributed'); %Distributed by columns
spmd
globalInd = globalIndices(D,2);
pos = find(globallnd == 225e3);
if ~isempty(pos)
fprintf(...
'Element is in position %d on worker %d.\n', pos, labindex);
end
end

If you run this code on a pool of four workers you get this result:
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Lab 1:
Element is in position 225000 on worker 1.

If you run this code on a pool of five workers you get this result:

Lab 2:
Element is in position 25000 on worker 2.

Notice if you use a pool of a different size, the element ends up in a different location on a
different worker, but the same code can be used to locate the element.

2-Dimensional Distribution

As an alternative to distributing by a single dimension of rows or columns, you can
distribute a matrix by blocks using '2dbc' or two-dimensional block-cyclic distribution.
Instead of segments that comprise a number of complete rows or columns of the matrix,
the segments of the codistributed array are 2-dimensional square blocks.

For example, consider a simple 8-by-8 matrix with ascending element values. You can
create this array in an spmd statement, communicating job, or pmode. This example uses
pmode for a visual display.

P>> A = reshape(1l:64, 8, 8)
The result is the replicated array:

1 9 17 25 33 41 49 57
2 10 18 26 34 42 50 58
3 11 19 27 35 43 51 59
4 12 20 28 36 44 52 60
5 13 21 29 37 45 53 61
6 14 22 30 38 46 54 62
7 15 23 31 39 47 55 63
8 16 24 32 40 48 56 64

Suppose you want to distribute this array among four workers, with a 4-by-4 block as the
local part on each worker. In this case, the lab grid is a 2-by-2 arrangement of the
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workers, and the block size is a square of four elements on a side (i.e., each block is a 4-
by-4 square). With this information, you can define the codistributor object:

P>> DIST = codistributor2dbc([2 2], 4)

Now you can use this codistributor object to distribute the original matrix:
P>> AA = codistributed(A, DIST)

This distributes the array among the workers according to this scheme:

LAB 1 LAB 2
1 g 17 25 33 41 49 S/

10 18 26 34 42 50 58
11 19 27 35 43 51 o
12 20 28 36 44 52 60

13 21 29 37 45 53 61
14 22 30 38 46 54 62
15 23 31 39 47 55 63

o N o o~ W N

16 24 32 40 48 56 64
LAB 3 LAB 4

If the lab grid does not perfectly overlay the dimensions of the codistributed array, you
can still use '2dbc' distribution, which is block cyclic. In this case, you can imagine the
lab grid being repeatedly overlaid in both dimensions until all the original matrix
elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block size of 3
instead of 4, so that 3-by-3 square blocks are distributed among the workers. The code
looks like this:

P>> DIST = codistributor2dbc([2 2], 3)
P>> AA = codistributed(A, DIST)

The first “row” of the lab grid is distributed to worker 1 and worker 2, but that contains
only six of the eight columns of the original matrix. Therefore, the next two columns are
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distributed to worker 1. This process continues until all columns in the first rows are
distributed. Then a similar process applies to the rows as you proceed down the matrix,
as shown in the following distribution scheme:

i_Originul matrix

1 17 I
R © 25LAB2 33 41 49 57 |

10 18 | 26 34 42| |50 58
11 19 | 27 35 43| |51 59! w1 LAB 2

12 20 28 36 44 52 60 |
LAB 3 LAB 4 I

14 22 | 30 38 46| |54 62! L3 LAB 4

LAB 1 LAB 2 LAB 1 LAB 2

LAB 3 LAB 4 LAB 3 LAB 4

The diagram above shows a scheme that requires four overlays of the lab grid to
accommodate the entire original matrix. The following pmode session shows the code and
resulting distribution of data to each of the workers:
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) Parallel Command Window - O] =]
File Edit Desktop Window Help kY
L H O
lab 1+ lab 2 =
ans = ﬂ ans = ﬂ
1 g 17 49 57 25 33 41
2 10 18 50 58 i 28 34 42
3 11 15 51 5g 27 35 43
7 15 23 L)) 63 31 39 47
g 16 24 56 64 32 40 8
- -
1| | » 1] | 3
lab 3+ lab 4 +
ans = ;I ans = ;I
4 12 20 52 &0 28 36 44
5 13 21 53 g1 i 29 37 45
& 14 22 54 62 30 38 46
- -
4| | 3 1] | 3
B = reshape(l:64, 8, 2) |
DIST = codistributor2dbc([2 2], 3)
AR = codistributed(i, DIST)
getLocalPart (AA) j
E>>

The following points are worth noting:

* '2dbc' distribution might not offer any performance enhancement unless the block
size is at least a few dozen. The default block size is 64.

* The lab grid should be as close to a square as possible.

* Not all functions that are enhanced to work on '1d' codistributed arrays work on
'2dbc' codistributed arrays.
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Looping Over a Distributed Range (for-drange)

In this section...

“Parallelizing a for-Loop” on page 5-20
“Codistributed Arrays in a for-drange Loop” on page 5-21

Note Using a for-loop over a distributed range (drange) is intended for explicit
indexing of the distributed dimension of codistributed arrays (such as inside an spmd
statement or a communicating job). For most applications involving parallel for-loops you
should first try using parfor loops. See “Parallel for-Loops (parfor)”.

Parallelizing a for-Loop

If you already have a coarse-grained application to perform, but you do not want to
bother with the overhead of defining jobs and tasks, you can take advantage of the ease-
of-use that pmode provides. Where an existing program might take hours or days to
process all its independent data sets, you can shorten that time by distributing these
independent computations over your cluster.

For example, suppose you have the following serial code:

results = zeros(1l, numDataSets);

for i = 1l:numDataSets
load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(1i);

end

plot(1l:numDataSets, results);

save \\central\myResults\today.mat results

The following changes make this code operate in parallel, either interactively in spmd or
pmode, or in a communicating job:

results = zeros(l, numDataSets, codistributor());

for i = drange(1l:numDataSets)
load ([ '\\central\myData\dataSet' int2str(i) '.mat'l])
results(i) = processDataSet(i);

end

res = gather(results, 1);

if labindex == 1

5-20



Looping Over a Distributed Range (for-drange)

plot(l:numDataSets, res);

print -dtiff -r300 fig.tiff;

save \\central\myResults\today.mat res
end

Note that the length of the for iteration and the length of the codistributed array
results need to match in order to index into results within a for drange loop. This
way, no communication is required between the workers. If results was simply a
replicated array, as it would have been when running the original code in parallel, each
worker would have assigned into its part of results, leaving the remaining parts of
results 0. At the end, results would have been a variant, and without explicitly calling
labSend and labReceive or gcat, there would be no way to get the total results back
to one (or all) workers.

When using the load function, you need to be careful that the data files are accessible to
all workers if necessary. The best practice is to use explicit paths to files on a shared file
system.

Correspondingly, when using the save function, you should be careful to only have one
worker save to a particular file (on a shared file system) at a time. Thus, wrapping the
codein if labindex == 1 is recommended.

Because results is distributed across the workers, this example uses gather to collect
the data onto worker 1.

A worker cannot plot a visible figure, so the print function creates a viewable file of the
plot.

Codistributed Arrays in a for-drange Loop

When a for-loop over a distributed range is executed in a communicating job, each
worker performs its portion of the loop, so that the workers are all working
simultaneously. Because of this, no communication is allowed between the workers while
executing a for-drange loop. In particular, a worker has access only to its partition of a
codistributed array. Any calculations in such a loop that require a worker to access
portions of a codistributed array from another worker will generate an error.

To illustrate this characteristic, you can try the following example, in which one for loop
works, but the other does not.

At the pmode prompt, create two codistributed arrays, one an identity matrix, the other
set to zeros, distributed across four workers.
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D
E

eye(8, 8, codistributor())
zeros(8, 8, codistributor())

By default, these arrays are distributed by columns; that is, each of the four workers
contains two columns of each array. If you use these arrays in a for-drange loop, any
calculations must be self-contained within each worker. In other words, you can only
perform calculations that are limited within each worker to the two columns of the arrays
that the workers contain.

For example, suppose you want to set each column of array E to some multiple of the
corresponding column of array D:

for j = drange(1l:size(D,2)); E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In effect, while D
is an identity matrix with 1s down the main diagonal, E has the sequence 1, 2, 3, etc.,
down its main diagonal.

This works because each worker has access to the entire column of D and the entire
column of E necessary to perform the calculation, as each worker works independently
and simultaneously on two of the eight columns.

Suppose, however, that you attempt to set the values of the columns of E according to
different columns of D:

for j = drange(1l:size(D,2)); E(:,j) = j*D(:,j+1); end

This method fails, because when j is 2, you are trying to set the second column of E using
the third column of D. These columns are stored in different workers, so an error occurs,
indicating that communication between the workers is not allowed.

Restrictions

To use for-drange on a codistributed array, the following conditions must exist:

* The codistributed array uses a 1-dimensional distribution scheme (not 2dbc).
* The distribution complies with the default partition scheme.

» The variable over which the for-drange loop is indexing provides the array subscript
for the distribution dimension.

» All other subscripts can be chosen freely (and can be taken from for-loops over the
full range of each dimension).
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To loop over all elements in the array, you can use for-drange on the dimension of
distribution, and regular for-loops on all other dimensions. The following example
executes in an spmd statement running on a parallel pool of 4 workers:

spmd
PP = zeros(6,8,12, 'codistributed');
RR = rand(6,8,12,codistributor())
% Default distribution:
% by third dimension, evenly across 4 workers.

:8
drange(1:12)
PP(ii,jj,kk) = RR(ii,jj,kk) + labindex;
end
end
end
end

To view the contents of the array, type:

PP
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Run MATLAB Functions with Distributed Arrays

5-24

Hundreds of functions in MATLAB and other toolboxes are enhanced so that they operate
on distributed arrays.

D
e

distributed(gallery('lehmer',n));
eig(D);

If any of the input arguments to these distributed-enabled functions is a distributed array,
their output arrays are distributed, unless returning MATLAB data is more appropriate
(for example, numel).

Distributed arrays are well suited for large mathematical computations, such as large
problems of linear algebra. You can also use distributed arrays for big data processing.
For more information on distributing arrays, see “Distributing Arrays to Parallel Workers”
on page 3-13.

Check Distributed Array Support in Functions

If a MATLAB function has distributed array support, you can consult additional
distributed array usage information on its function page. See Distributed Arrays in the
Extended Capabilities section at the end of the function page.

You can also browse distributed support for functions, and filter by product. On the Help
bar, click Functions. In the function list, browse the left pane to select a product, for
example, MATLAB. At the bottom of the left pane, select Distributed Arrays. If you
select a product that does not have distributed-enabled functions, then the Distributed
Arrays filter is not available.

For information about updates to individual distributed-enabled functions, see the release
notes.

To check support for special distributed data types, consult the following sections.

Support for Sparse Distributed Arrays

The following list shows functions that can help you work with sparse distributed arrays.
In addition to this list, most element-wise functions in MATLAB also work for distributed
arrays.
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bandwidth cumsum isdiag pcg spones vertcat([;])
bicg diag istril power(.”) subsasgn
bicgstab diff istriu plus(+) subsref
bicgstabl find ldivide(.\) qmr svds
cat flip lsqr rdivide(./) tfgmr
cgs fliplr minus(-) rot90o transpose(."')
ctranspose(') |flipud mldivide(\) sort tril
cummax gmres mrdivide(/) sortrows triu
cummin horzcat([]) mtimes (*) sparse uminus(-)
cumprod isbanded normest spfun uplus(+)
Support for Distributed calendarDuration Arrays
calendarDuration calquarters cellstr time
caldays calweeks datevec
calmonths calyears iscalendarDuration
Support for Distributed categorical Arrays
categorical iscategorical isundefined setcats
addcats iscategory removecats
categories isordinal renamecats
countcats isprotected reordercats
Support for Distributed datetime Arrays
datetime exceltime isweekend string
between hms juliandate timeofday
cellstr hour minute tzoffset
datenum isbetween month week
dateshift isdatetime posixtime year
datevec isdst quarter ymd
day isnat second yyyymmdd
Support for Distributed duration Arrays
duration datevec hours minutes
cellstr days isduration seconds
datenum hms milliseconds years
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matlab: doc distributed/bandwidth
matlab: doc distributed/bicg
matlab: doc distributed/bicgstab
matlab: doc distributed/bicgstabl
matlab: doc distributed/cat
matlab: doc distributed/cgs
matlab: doc distributed/ctranspose
matlab: doc distributed/cummax
matlab: doc distributed/cummin
matlab: doc distributed/cumprod
matlab: doc distributed/cumsum
matlab: doc distributed/diag
matlab: doc distributed/diff
matlab: doc distributed/find
matlab: doc distributed/flip
matlab: doc distributed/fliplr
matlab: doc distributed/flipud
matlab: doc distributed/gmres
matlab: doc distributed/horzcat
matlab: doc distributed/isbanded
matlab: doc distributed/isdiag
matlab: doc distributed/istriu
matlab: doc distributed/istril
matlab: doc distributed/ldivide
matlab: doc distributed/lsqr
matlab: doc distributed/minus
matlab: doc distributed/mldivide
matlab: doc distributed/mrdivide
matlab: doc distributed/mtimes
matlab: doc distributed/normest
matlab: doc distributed/pcg
matlab: doc distributed/power
matlab: doc distributed/plus
matlab: doc distributed/qmr
matlab: doc distributed/rdivide
matlab: doc distributed/rot90
matlab: doc distributed/sort
matlab: doc distributed/sortrows
matlab: doc distributed/sparse
matlab: doc distributed/spfun
matlab: doc distributed/spones
matlab: doc distributed/subsasgn
matlab: doc distributed/subsref
matlab: doc distributed/svds
matlab: doc distributed/tfqmr
matlab: doc distributed/transpose
matlab: doc distributed/tril
matlab: doc distributed/triu
matlab: doc distributed/uminus
matlab: doc distributed/uplus
matlab: doc distributed/vertcat
matlab: doc distributed/calendarDuration
matlab: doc distributed/caldays
matlab: doc distributed/calmonths
matlab: doc distributed/calquarters
matlab: doc distributed/calweeks
matlab: doc distributed/calyears
matlab: doc distributed/cellstr
matlab: doc distributed/datevec
matlab: doc distributed/iscalendarDuration
matlab: doc distributed/time
matlab: doc distributed/categorical
matlab: doc distributed/addcats
matlab: doc distributed/categories
matlab: doc distributed/countcats
matlab: doc distributed/iscategorical
matlab: doc distributed/iscategory
matlab: doc distributed/isordinal
matlab: doc distributed/isprotected
matlab: doc distributed/isundefined
matlab: doc distributed/removecats
matlab: doc distributed/renamecats
matlab: doc distributed/reordercats
matlab: doc distributed/setcats
matlab: doc distributed/datetime
matlab: doc distributed/between
matlab: doc distributed/cellstr
matlab: doc distributed/datenum
matlab: doc distributed/dateshift
matlab: doc distributed/datevec
matlab: doc distributed/day
matlab: doc distributed/exceltime
matlab: doc distributed/hms
matlab: doc distributed/hour
matlab: doc distributed/isbetween
matlab: doc distributed/isdatetime
matlab: doc distributed/isdst
matlab: doc distributed/isnat
matlab: doc distributed/isweekend
matlab: doc distributed/juliandate
matlab: doc distributed/minute
matlab: doc distributed/month
matlab: doc distributed/posixtime
matlab: doc distributed/quarter
matlab: doc distributed/second
matlab: doc distributed/string
matlab: doc distributed/timeofday
matlab: doc distributed/tzoffset
matlab: doc distributed/week
matlab: doc distributed/year
matlab: doc distributed/ymd
matlab: doc distributed/yyyymmdd
matlab: doc distributed/duration
matlab: doc distributed/cellstr
matlab: doc distributed/datenum
matlab: doc distributed/datevec
matlab: doc distributed/days
matlab: doc distributed/hms
matlab: doc distributed/hours
matlab: doc distributed/isduration
matlab: doc distributed/milliseconds
matlab: doc distributed/minutes
matlab: doc distributed/seconds
matlab: doc distributed/years
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Support for Distributed string Arrays

string erase insertBefore replaceBetween
cellstr eraseBetween ismissing reverse
compose extractAfter isstring startsWith
contains extractBefore lower strip
count extractBetween pad strlength
endsWith insertAfter replace upper
Support for Distributed table Arrays
table istable table2cell
head standardizeMissing |[tail
ismissing table2array
Support for Distributed timetable Arrays
head properties table2timetable width
height size tail
istimetable sort timetable
ndims subsref timetable2table
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matlab: doc distributed/string
matlab: doc distributed/cellstr
matlab: doc distributed/compose
matlab: doc distributed/contains
matlab: doc distributed/count
matlab: doc distributed/endsWith
matlab: doc distributed/erase
matlab: doc distributed/eraseBetween
matlab: doc distributed/extractAfter
matlab: doc distributed/extractBefore
matlab: doc distributed/extractBetween
matlab: doc distributed/insertAfter
matlab: doc distributed/insertBefore
matlab: doc distributed/ismissing
matlab: doc distributed/isstring
matlab: doc distributed/lower
matlab: doc distributed/pad
matlab: doc distributed/replace
matlab: doc distributed/replaceBetween
matlab: doc distributed/reverse
matlab: doc distributed/startsWith
matlab: doc distributed/strip
matlab: doc distributed/strlength
matlab: doc distributed/yyyymmdd
matlab: doc distributed/table
matlab: doc distributed/head
matlab: doc distributed/ismissing
matlab: doc distributed/istable
matlab: doc distributed/standardizeMissing
matlab: doc distributed/table2array
matlab: doc distributed/table2cell
matlab: doc distributed/tail

Programming Overview

This chapter provides information you need for programming with Parallel Computing
Toolbox software. Further details of evaluating functions in a cluster, programming
independent jobs, and programming communicating jobs are covered in later chapters.
This chapter describes features common to programming all kinds of jobs. The sections
are as follows.

“How Parallel Computing Products Run a Job” on page 6-2
“Program a Job on a Local Cluster” on page 6-10

“Specify Your Parallel Preferences” on page 6-12

“Discover Clusters and Use Cluster Profiles” on page 6-15

“Apply Callbacks to MATLAB Job Scheduler Jobs and Tasks” on page 6-28
“Job Monitor” on page 6-32

“Programming Tips” on page 6-35

“Control Random Number Streams on Workers” on page 6-40
“Profiling Parallel Code” on page 6-44

“Troubleshooting and Debugging” on page 6-53

“Big Data Workflow Using Tall Arrays and Datastores” on page 6-58
“Use Tall Arrays on a Parallel Pool” on page 6-61

“Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 6-65
“Run mapreduce on a Parallel Pool” on page 6-69

“Run mapreduce on a Hadoop Cluster” on page 6-73

“Partition a Datastore in Parallel” on page 6-76
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How Parallel Computing Products Run a Job

6-2

In this section...

“Overview” on page 6-2
“Toolbox and Server Components” on page 6-3

“Life Cycle of a Job” on page 6-7

Overview

Parallel Computing Toolbox and MATLAB Parallel Server software let you solve
computationally and data-intensive problems using MATLAB and Simulink on multicore
and multiprocessor computers. Parallel processing constructs such as parallel for-loops
and code blocks, distributed arrays, parallel numerical algorithms, and message-passing
functions let you implement task-parallel and data-parallel algorithms at a high level in
MATLAB without programming for specific hardware and network architectures.

A job is some large operation that you need to perform in your MATLAB session. A job is
broken down into segments called tasks. You decide how best to divide your job into
tasks. You could divide your job into identical tasks, but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the client session.
Often, this is on the machine where you program MATLAB. The client uses Parallel
Computing Toolbox software to perform the definition of jobs and tasks and to run them
on a cluster local to your machine. MATLAB Parallel Server software is the product that
performs the execution of your job on a cluster of machines.

The MATLAB Job Scheduler is the process that coordinates the execution of jobs and the
evaluation of their tasks. The MATLAB Job Scheduler distributes the tasks for evaluation
to the server's individual MATLAB sessions called workers. Use of the MATLAB Job
Scheduler to access a cluster is optional; the distribution of tasks to cluster workers can
also be performed by a third-party scheduler, such as Microsoft® Windows® HPC Server
(including CCS) or Platform LSF®.

See the Glossary for definitions of the parallel computing terms used in this manual.
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MATLAB Client

Parallel Computing
Toolbox

Scheduler

Basic Parallel Computing Setup

Toolbox and Server Components

“MATLAB Job Scheduler, Workers, and Clients” on page 6-3

“Local Cluster” on page 6-5

“Third-Party Schedulers” on page 6-5

“Components on Mixed Platforms or Heterogeneous Clusters” on page 6-7
“mjs Service” on page 6-7

“Components Represented in the Client” on page 6-7

MATLAB Job Scheduler, Workers, and Clients

The MATLAB Job Scheduler can be run on any machine on the network. The MATLAB Job
Scheduler runs jobs in the order in which they are submitted, unless any jobs in its queue
are promoted, demoted, canceled, or deleted.

Each worker is given a task from the running job by the MATLAB Job Scheduler, executes
the task, returns the result to the MATLAB Job Scheduler, and then is given another task.
When all tasks for a running job have been assigned to workers, the MATLAB Job
Scheduler starts running the next job on the next available worker.
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A MATLAB Parallel Server software setup usually includes many workers that can all
execute tasks simultaneously, speeding up execution of large MATLAB jobs. It is generally
not important which worker executes a specific task. In an independent job, the workers
evaluate tasks one at a time as available, perhaps simultaneously, perhaps not, returning
the results to the MATLAB Job Scheduler. In a communicating job, the workers evaluate
tasks simultaneously. The MATLAB Job Scheduler then returns the results of all the tasks
in the job to the client session.

Note For testing your application locally or other purposes, you can configure a single
computer as client, worker, and MATLAB Job Scheduler host. You can also have more than
one worker session or more than one MATLAB Job Scheduler session on a machine.

Task
Job > Results
Client |
All Results Task
Scheduler

Results

Job -

Client | ~
— All Results Task
Results

Interactions of Parallel Computing Sessions

A large network might include several MATLAB Job Schedulers as well as several client
sessions. Any client session can create, run, and access jobs on any MATLAB Job
Scheduler, but a worker session is registered with and dedicated to only one MATLAB Job
Scheduler at a time. The following figure shows a configuration with multiple MATLAB
Job Schedulers.
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Client Scheduler 1
m e
lent
\
Client
Client Scheduler 2

Cluster with Multiple Clients and MATLAB Job Schedulers
Local Cluster

A feature of Parallel Computing Toolbox software is the ability to run a local cluster of
workers on the client machine, so that you can run jobs without requiring a remote
cluster or MATLAB Parallel Server software. In this case, all the processing required for
the client, scheduling, and task evaluation is performed on the same computer. This gives
you the opportunity to develop, test, and debug your parallel applications before running
them on your network cluster.

Third-Party Schedulers

As an alternative to using the MATLAB Job Scheduler, you can use a third-party scheduler.
This could be a Microsoft Windows HPC Server (including CCS), Platform LSF scheduler,
PBS Pro® scheduler, TORQUE scheduler, or a generic scheduler.

Choosing Between a Third-Party Scheduler and a MATLAB Job Scheduler

You should consider the following when deciding to use a third-party scheduler or the
MATLAB Job Scheduler for distributing your tasks:

* Does your cluster already have a scheduler?

If you already have a scheduler, you may be required to use it as a means of
controlling access to the cluster. Your existing scheduler might be just as easy to use
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as a MATLAB Job Scheduler, so there might be no need for the extra administration
involved.

Is the handling of parallel computing jobs the only cluster scheduling management you
need?

The MATLAB Job Scheduler is designed specifically for MathWorks® parallel
computing applications. If other scheduling tasks are not needed, a third-party
scheduler might not offer any advantages.

Is there a file sharing configuration on your cluster already?

The MATLAB Job Scheduler can handle all file and data sharing necessary for your
parallel computing applications. This might be helpful in configurations where shared
access is limited.

Are you interested in batch mode or managed interactive processing?

When you use a MATLAB Job Scheduler, worker processes usually remain running at
all times, dedicated to their MATLAB Job Scheduler. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks, and
stopped when their tasks are complete. If tasks are small or take little time, starting a
worker for each one might involve too much overhead time.

Are there security concerns?

Your own scheduler might be configured to accommodate your particular security
requirements.

How many nodes are on your cluster?
If you have a large cluster, you probably already have a scheduler. Consult your

MathWorks representative if you have questions about cluster size and the MATLAB
Job Scheduler.

Who administers your cluster?

The person administering your cluster might have a preference for how jobs are
scheduled.
Do you need to monitor your job's progress or access intermediate data?

A job run by the MATLAB Job Scheduler supports events and callbacks, so that
particular functions can run as each job and task progresses from one state to another.
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Components on Mixed Platforms or Heterogeneous Clusters

Parallel Computing Toolbox software and MATLAB Parallel Server software are supported
on Windows, UNIX®, and Macintosh operating systems. Mixed platforms are supported,
so that the clients, MATLAB Job Scheduler, and workers do not have to be on the same
platform. Other limitations are described at System Requirements.

In a mixed-platform environment, system administrators should be sure to follow the
proper installation instructions for the local machine on which you are installing the
software.

mjs Service

If you are using the MATLAB Job Scheduler, every machine that hosts a worker or
MATLAB Job Scheduler session must also run the mjs service.

The mjs service controls the worker and MATLAB Job Scheduler sessions and recovers
them when their host machines crash. If a worker or MATLAB Job Scheduler machine
crashes, when the mjs service starts up again (usually configured to start at machine boot
time), it automatically restarts the MATLAB Job Scheduler and worker sessions to resume
their sessions from before the system crash. More information about the mjs service is
available in the MATLAB Parallel Server documentation.

Components Represented in the Client

A client session communicates with the MATLAB Job Scheduler by calling methods and
configuring properties of an MATLAB Job Scheduler cluster object. Though not often
necessary, the client session can also access information about a worker session through
a worker object.

When you create a job in the client session, the job actually exists in the MATLAB Job
Scheduler job storage location. The client session has access to the job through a job
object. Likewise, tasks that you define for a job in the client session exist in the MATLAB
Job Scheduler data location, and you access them through task objects.

Life Cycle of a Job
When you create and run a job, it progresses through a number of stages. Each stage of a

job is reflected in the value of the job object’s State property, which can be pending,
queued, running, or finished. Each of these stages is briefly described in this section.
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The figure below illustrates the stages in the life cycle of a job. In the MATLAB Job
Scheduler (or other scheduler), the jobs are shown categorized by their state. Some of the
functions you use for managing a job are createJob, submit, and fetchOutputs.

Cluster
Queued Running
BTN
Pending L _<I(Zb_ . Job Worker

""""" submit ..
createdob | [..Job__] | Finished

Client | | —/—— TIRETT
fetchOutputs “TJob T

foon

Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description

Pending You create a job on the scheduler with the createJob function in
your client session of Parallel Computing Toolbox software. The
job's first state is pending. This is when you define the job by
adding tasks to it.

Queued When you execute the submit function on a job, the MATLAB Job
Scheduler or scheduler places the job in the queue, and the job's
state is queued. The scheduler executes jobs in the queue in the
sequence in which they are submitted, all jobs moving up the
queue as the jobs before them are finished. You can change the
sequence of the jobs in the queue with the promote and demote
functions.

Running When a job reaches the top of the queue, the scheduler distributes
the job's tasks to worker sessions for evaluation. The job’s state is
now running. If more workers are available than are required for
a job's tasks, the scheduler begins executing the next job. In this

way, there can be more than one job running at a time.
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Job Stage Description

Finished When all of a job’s tasks have been evaluated, the job is moved to
the finished state. At this time, you can retrieve the results from
all the tasks in the job with the function fetchOutputs.

Failed When using a third-party scheduler, a job might fail if the
scheduler encounters an error when attempting to execute its
commands or access necessary files.

Deleted When a job’s data has been removed from its data location or from

the MATLAB Job Scheduler with the delete function, the state of
the job in the client is deleted. This state is available only as
long as the job object remains in the client.

Note that when a job is finished, its data remains in the MATLAB Job Scheduler’s
JobStoragelLocation folder, even if you clear all the objects from the client session.
The MATLAB Job Scheduler or scheduler keeps all the jobs it has executed, until you
restart the MATLAB Job Scheduler in a clean state. Therefore, you can retrieve
information from a job later or in another client session, so long as the MATLAB Job
Scheduler has not been restarted with the -clean option.

You can permanently remove completed jobs from the MATLAB Job Scheduler or
scheduler's storage location using the Job Monitor GUI or the delete function.
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In some situations, you might need to define the individual tasks of a job, perhaps
because they might evaluate different functions or have uniquely structured arguments.
To program a job like this, the typical Parallel Computing Toolbox client session includes
the steps shown in the following example.

This example illustrates the basic steps in creating and running a job that contains a few
simple tasks. Each task evaluates the sum function for an input array.

1

Identify a cluster. Use parallel.defaultClusterProfile to indicate that you are
using the local cluster; and use parcluster to create the object c to represent this
cluster. (For more information, see “Create a Cluster Object” on page 7-4.)

parallel.defaultClusterProfile('local');

c = parcluster();

Create a job. Create job j on the cluster. (For more information, see “Create a Job”
on page 7-4.)

j = createlob(c)

Create three tasks within the job j. Each task evaluates the sum of the array that is
passed as an input argument. (For more information, see “Create Tasks” on page 7-
5.)

createTask(j, @sum, 1, {[1 1]1});

createTask(j, @sum, 1, {[2 2]});

createTask(j, @sum, 1, {[3 31});

Submit the job to the queue for evaluation. The scheduler then distributes the job’s
tasks to MATLAB workers that are available for evaluating. The local cluster might
now start MATLAB worker sessions. (For more information, see “Submit a Job to the
Cluster” on page 7-5.)

submit(j);

Wait for the job to complete, then get the results from all the tasks of the job. (For
more information, see “Fetch the Job Results” on page 7-6.)

wait(j)
results
results
[2]
[4]
[6]

fetchOutputs(j)



Program a Job on a Local Cluster

6 Delete the job. When you have the results, you can permanently remove the job from
the scheduler's storage location.

delete(j)
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Specify Your Parallel Preferences

You can access your parallel preferences in any of the following ways:

¢ On the Home tab in the Environment section, select Parallel > Parallel
Preferences
» Select the desktop pool indicator icon, and select Parallel preferences.

* In the command window, type preferences.
preferences

In the navigation tree of the Preferences dialog box, select Parallel Computing
Toolbox.

4\ Preferences

MATLAB Parallel Computing Toolbox Preferences
Add-Ons.
App Designer Clusters
Code Analyzer

Default Cluster: | local -
Colors L 4

Command History Cluster profiles can be created and edited in Cluster Profile Manager.
Command Window

Camparison

Current Folder

Editor/Debugger Cerel i

Figure Copy Template Preferred number of workers in a parallel pool: |12

Eua:t:m Mote: The actual number of workers comprising the parallel poal might be fewer, if fewer workers or cores
GUIDE

Help

Keyboard Automatically create a parallel pool (if one doesn't already exist) when parallel keywords (e.g., parfor) are
executed,

are available.

Toolbars
Variables
Web
Workspace 30 minutes

Simulink

Image Processing Toolbox

Parallel Computing Toolbox

Shut down and delete a parallel pool after it is idle for:

Simulink 3D Animation

0K ] I Cancel I { Apply J I Help

You can control your parallel preference settings as follows:

* Default Cluster — Choose the cluster you want to use. The default cluster is local.
For more information, see “Add and Modify Cluster Profiles” on page 6-20.
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* Preferred number of workers — Specify the number of workers in your parallel
pool. The actual pool size is limited by licensing, cluster size, and cluster profile
settings on page 6-20. See “Pool Size and Cluster Selection” on page 2-74. For the
local profile, do not choose a preferred number of workers larger than 512. See also
“Add and Modify Cluster Profiles” on page 6-20. Check your access to cloud
computing from the Parallel > Discover Clusters menu.

* Automatically create a parallel pool — Select this option to start a pool
automatically (if a pool does not yet exist). Many functions can automatically start a
parallel pool, including:

* parfor

* spmd

e distributed

* Composite

+ parfeval

* parfevalOnAll
* gcp

* mapreduce

* mapreducer

If you have selected Automatically create a parallel pool, you do not need to open a
pool manually using the parpool function. If a pool automatically opens, you can still
access the pool object with gcp.

* Shut down and delete a parallel pool — To shut down a parallel pool automatically
if the pool has been idle for the specified amount of time, use the IdleTimeout
setting. If you use the pool (for example, using parfor or parfeval), the timeout
counter is reset. When the timeout is about to expire, a tooltip on the desktop pool
indicator warns you and allows you to reset the timer.

See Also
Related Examples

. “Run MATLAB Functions with Automatic Parallel Support” on page 1-24
. “Scale up from Desktop to Cluster”
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More About

. “Decide When to Use parfor” on page 2-2
. “Scale Up parfor-Loops to Cluster and Cloud” on page 2-26
. “Add and Modify Cluster Profiles” on page 6-20
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Discover Clusters and Use Cluster Profiles

In this section...

“Create and Manage Cluster Profiles” on page 6-16
“Discover Clusters” on page 6-17

“Create Cloud Cluster” on page 6-19

“Add and Modify Cluster Profiles” on page 6-20

“Import and Export Cluster Profiles” on page 6-24

“Edit Number of Workers and Cluster Settings” on page 6-25
“Use Your Cluster from MATLAB” on page 6-26

Parallel Computing Toolbox comes pre-configured with the cluster profile Local for
running parallel code on your local desktop machine.

Control parallel behavior using the Parallel menu on the MATLAB Home tab.

mmi

select a Default Cluster >

Discover Clusters...
Create and Manage Clusters...

Monitor Jobs

Parallel Preferences...

You can use the Parallel menu to:
» Discover other clusters running on your network or on Amazon EC2. Click Parallel >
Discover Clusters. For more information, see “Discover Clusters” on page 6-17.

* Create and manage cluster profiles using the Cluster Profile Manager. Click Parallel
> Create and Manage Clusters. For more information, see “Create and Manage
Cluster Profiles” on page 6-16.
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Create and Manage Cluster Profiles

Cluster profiles let you define certain properties for your cluster, then have these
properties applied when you create cluster, job, and task objects in the MATLAB client.
Some of the functions that support the use of cluster profiles are

* batch

* parpool

* parcluster

Manage cluster profiles using the Cluster Profile Manager. To open the Cluster Profile

Manager, on the Home tab, in the Environment section, select Parallel > Create and
Manage Clusters.

4\ Cluster Profile Manager — O *

L“{ I:II:II:I QE': & y Duplicate . Rename g W <fg Manage Licenses & Alerls @

; _ C_; Test Cloud Connectivity
Dizcover Add Cluster Create Cloud Import Edit 1 Delete <+ Set gz Defautt Export Validate Help
Clusters  Profile = Cluster - - - (= Cloud Center
CREATE MANAGE PROFILE VALIDATE CLOUD HELP
Cluster Profile local Type: Local

= Properties Validation
Description of this cluster The local cluster
Description
MNumber of workers to start on your local machine number of cores, up to 512 (default)
HumiWorkers
MNumber of computational threads to use on each 1 (default)
worker
HumThreads
Folder where job data is stored on the client determined at runtime (default)
JobStorageLocation

FILES AND FOLDERS
Automatically send code files to cluster. Data files true (default)
must be listed below.
RutohttachFiles
Edit
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+ Discover other clusters running on your network or on Amazon® AWS®. For more
information, see “Discover Clusters” on page 6-17.

* Create a cluster in the cloud, such as Amazon AWS. For more information, see “Create
Cloud Cluster” on page 6-19.

* Add cluster profiles and modify their properties. For more information, see “Add and
Modify Cluster Profiles” on page 6-20.

» Import and export cluster profiles. For more information, see “Import and Export
Cluster Profiles” on page 6-24.

» Specify profile properties. For more information, see “Edit Number of Workers and
Cluster Settings” on page 6-25.

* Validate that a cluster profile is ready for use in MATLAB.

Discover Clusters

You can let MATLAB discover clusters for you. Use either of the following techniques to
discover those clusters which are available for you to use:

* On the Home tab in the Environment section, select Parallel > Discover Clusters
* In the Cluster Profile Manager, select Discover Clusters

This opens the Discover Clusters dialog box, where you can search for MATLAB Parallel
Server clusters:
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4\ Discover Clusters *

Where do you want to look for MATLAB Parallel Server clusters?

On your network
Select this eption if your clusters use a MATLAB Job Scheduler or Microsoft Windows HPC Server.

[ On Amazon EC2
Select this option to find clusters running en Amazon EC2. You must provide your MathWorks Account
login infermation to access these clusters.

Cancel

If you select On your network, you see a new window. Select this option if your clusters
use a MATLAB Job Scheduler or Microsoft Windows HPC server. As clusters are
discovered, they populate a list for your selection. If you already have a profile for any of
the listed clusters, those profile names are included in the list. If you want to create a new
profile for one of the discovered clusters, select the name of the cluster you want to use,
and select Next. The subsequent dialog box lets you choose if you want to set the created
profile as your default.

If you select On Amazon EC2, you search for clusters running on Amazon EC2. To access
these clusters, you must provide your MathWorks Account login information.

Requirements for Cluster Discovery

Cluster discovery is supported only for MATLAB Job Schedulers, Microsoft Windows HPC
Server, and Amazon EC2 cloud clusters. If you need to integrate your scheduler with
MATLAB Parallel Server, or create a cluster profile for a different supported scheduler,
see “Getting Started with MATLAB Parallel Server” (MATLAB Parallel Server). The
following requirements apply to cluster discovery:

* MATLAB Job Scheduler — MATLAB Job Scheduler clusters support two different
means of discovery:
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Multicast: The discover clusters functionality uses the multicast networking
protocol from the client to search for head nodes where a MATLAB Job Scheduler is
running. This requires that the multicast networking protocol is enabled and
working on the network that connects the MATLAB Job Scheduler head nodes
(where the schedulers are running) and the client machines. This form of discovery
might be limited to the client local subnet, and therefore not always able to
discover a MATLAB Job Scheduler elsewhere in your network.

DNS SRV: An alternative discovery technique is to search for clusters by DNS
service records.

The Domain Name System (DNS) is a standard for identifying host names with IP
addresses, either on the Internet or in a private network. Using DNS allows
discovery of MATLAB Job Scheduler clusters by identifying specific hosts rather
than broadcasting across your network.

A DNS service (SRV) record defines the location of hosts and ports of services, such
as those related to the clusters you want to discover. Your system administrator
creates DNS SRV records in your organization’s DNS infrastructure. For a
description of the required record, and validation information, see “DNS SRV
Record” (MATLAB Parallel Server).

HPC Server — The discover clusters functionality uses Active Directory Domain

Services to discover head nodes. HPC Server head nodes are added to the Active
Directory during installation of the HPC Server software.

Amazon EC2 — The discover clusters functionality requires a working network
connection between the client and the Cloud Center web services running in
mathworks.com.

Create Cloud Cluster

You can create clusters in cloud services, such as Amazon AWS, directly from the Cluster
Profile Manager. In the Cluster Profile Manager, select Create Cloud Cluster. Sign up
with your MathWorks Account and complete the required steps. Then, you can create a
cloud cluster and configure parameters, such as the number of machines or the number
of workers per machine. For more information on each of the available parameters, see
Create a Cloud Cluster. When you complete all the steps, MATLAB creates a new cluster
profile for you. You can modify its properties from the Cluster Profile Manager.

To manage your licenses, test cloud connectivity, or manage your cloud clusters in
MathWorks Cloud Center, go to Cluster Profile Manager toolstrip > CLOUD section.
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Add and Modify Cluster Profiles

With the Cluster Profile Manager, you can add a cluster profile for a MATLAB job
scheduler or a third-party scheduler. If you need to set up your cluster for use with
MATLAB, see “Getting Started with MATLAB Parallel Server” (MATLAB Parallel Server).

The following example provides instructions on how to add and modify profiles using the
Cluster Profile Manager.

Suppose you want to create a profile to set several properties for jobs to run in a MATLAB
Job Scheduler cluster. The following example illustrates a possible workflow, where you
create two profiles differentiated only by the number of workers they use.

1 In the Cluster Profile Manager, select Add Cluster Profile > MATLAB Job
Scheduler. This specifies that you want a new profile for a MATLAB Job Scheduler
cluster.
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4\ Cluster Profile Manager

Discover
Clusters

IE!‘—_I':I C‘?{.nl-‘ I&A y % Duplicate - Rename

Add Cluster| Create Cloud Import Edit Delete + Sgtas Defsut Export Validate

Profile « Cluster

CLUSTERS USING MATHWORKS SCHEDULERS

MATLAE Job Scheduler
Use a MATLAB Parallel Server cluster running MATLAB Job Scheduler

Local
Use the cores on your machine

CLUSTERS USING THIRD PARTY SCHEDULERS
HPC Server

LSF

PES Pro

Slurm

Torgue

Generic
Use this to support all other schedulers or nonshared file systems
using ssh as a submission tool through a submission host

O x
‘(5 Manage Licenses & Alerts
SRR 78RS @
 Test Cloud Connectivity
Help
v 4 Cloud Center
VALIDATE CLOUD HELF
Type: Local

n your local machine

reads to use on each worker

zd on the client

FILES AND FOLDERS

be listed below.
AutokttachFiles

ArtachedFiles

Automatically send code files to cluster. Data files must

Manually specify files and folders to copy from client to
cluster nodes (One entry per line)

The local cluster

number of cores, up te 512 (default)

1 (default)

determined at runtime (default)

true (default)

<none»

Edit

This creates and displays a new profile, called MJSProfilel.

2 Double-click the new profile name in the listing, and modify the profile name to be

MyMJSProfilel.

3 Select Edit in the tool strip so that you can set your profile property values.

In the Description field, enter the text MJS with 4 workers, as shown in the
following figure. Enter the host name for the machine on which the MATLAB Job

Scheduler is running, and the name of the MATLAB Job Scheduler. If you are entering

information for an actual MATLAB Job Scheduler already running on your network,
enter the actual names. If you are unsure about the MATLAB Job Scheduler names
and locations on your network, ask your system administrator for help.
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4\ Cluster Profile Manager

Description of this cluster ‘ WIS with 4 workers |
Description

Hostname of the machine where the MATLAB Job ‘ |
Scheduler is running. (Required)
Host

The name of the MATLAB Job Scheduler. (Required if ‘ |
multiple schedulers on the host machine)
MISName

User name for MATLAB Job Scheduler access. (Required if ‘ Use default |
the scheduler uses Security Level 1-3) Default t

e — ault is current user

MNumber of computational threads to use on each worker ‘ Use default |
NumThreads

Default is 1

Note If the MATLAB Job Scheduler is using a nondefault BASE PORT setting as
defined in the mjs_def file, the Host property in the cluster profile must be
appended with this BASE_PORT number. For example, MJS-Host:40000.

4  Scroll down to the Workers section, and for the Range of number of workers, enter
the two-element vector [4 4]. This specifies that jobs using this profile require at
least four workers and no more than four workers. Therefore, a job using this profile
runs on exactly four workers, even if it has to wait until four workers are available
before starting.
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A\ Cluster Profile Manager

WORKERS

Range of number of workers te run job |[4 4] |
HumWork R, . .

L Default is [1 inf]
Return command window output | Use default ~ |
CaptureDiary

Default is false

Manually specify environment variables to copy from
client to workers (One entry per ling)
EnvironmentVariables

Restart workers before job executes | Use default hd |
RestartWork:
SSLALTHOTkER Default is false
Maximum number of times that a job will try to run |u59 default |
again if it fails .
MaximumRetries PEmi=t v

You might want to edit other properties depending on your particular network and
cluster situation.

5 Select Done to save the profile settings.

To create a similar profile with just a few differences, you can duplicate an existing profile
and modify only the parts you need to change, as follows:

1 In the Cluster Profile Manager, right-click the profile name MyMJSProfilel in the
list and select Duplicate.

This creates a duplicate profile with a name based on the original profile name
appended with Copy.

2 Double-click the new profile name and edit its name to be MyMJSprofile2.
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3  Select Edit to allow you to change the profile property values.
Edit the description field to change its text to MJS with any workers.

5 Scroll down to the Workers section, and for the Range of number of workers, clear
the [4 4] and leave the field blank.

6 Select Done to save the profile settings and to close the properties editor.

You now have two profiles that differ only in the number of workers required for running
a job.

When creating a job, you can apply either profile to that job as a way of specifying how
many workers it should run on.

You can see examples of profiles for different kinds of supported schedulers in the
MATLAB Parallel Server installation instructions at “Configure Your Cluster” (MATLAB
Parallel Server).

Import and Export Cluster Profiles

Cluster profiles are stored as part of your MATLAB preferences, so they are generally
available on an individual user basis. To make a cluster profile available to someone else,
you can export it to a separate .settings file. In this way, a repository of profiles can be
created so that all users of a computing cluster can share common profiles.

To export a cluster profile:

In the Cluster Profile Manager, select (highlight) the profile you want to export.

2 Select Export > Export. (Alternatively, you can right-click the profile in the listing
and select Export.)

If you want to export all your profiles to a single file, select Export > Export All

3 In the Export profiles to file dialog box, specify a location and name for the file. The
default file name is the same as the name of the profile it contains, with a .settings
extension appended; you can alter the names if you want to.

Profiles saved in this way can then be imported by other MATLAB users:

1 In the Cluster Profile Manager, select Import.

2 In the Import profiles from file dialog box, browse to find the .settings file for the
profile you want to import. Select the file and select Open.
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The imported profile appears in your Cluster Profile Manager list. Note that the list
contains the profile name, which is not necessarily the file name. If you already have
a profile with the same name as the one you are importing, the imported profile gets
an extension added to its name so you can distinguish it.

You can also export and import profiles programmatically with the
parallel.exportProfile and parallel.importProfile functions.

Export Profiles for MATLAB Compiler

You can use an exported profile with MATLAB Compiler and MATLAB Compiler SDK to
identify cluster setup information for running compiled applications on a cluster. For
example, the setmcruserdata function can use the exported profile file name to set the
value for the key ParallelProfile. For more information and examples of deploying
parallel applications, see “Pass Parallel Computing Toolbox Profile at Run Time” (MATLAB
Compiler), and “Use Parallel Computing Toolbox in Deployed Applications” (MATLAB
Compiler SDK).

A compiled application has the same default profile and the same list of alternative
profiles that the compiling user had when the application was compiled. This means that
in many cases the profile file is not needed, as might be the case when using the local
profile for local workers. If an exported file is used, the first profile in the file becomes the
default when imported. If any of the imported profiles have the same name as any of the
existing profiles, they are renamed during import (though their names in the file remain
unchanged).

Edit Number of Workers and Cluster Settings

After you create a cluster profile, you can specify the number of workers and other profile
properties:

* NumWorkers: the number of workers to start a pool. The actual pool size might be
limited by licensing, cluster size, and cluster profile settings. See “Pool Size and
Cluster Selection” on page 2-74

* NumThreads: the number of computational threads to use on each worker. You can
change NumThreads, so that your workers can run in multithreaded mode and use all
the cores on your cluster. This allows you to increase the number of computational
threads NumThreads on each worker, without increasing the number of workers
NumWorkers. If you have more cores available, increase NumThreads to take full
advantage of the built-in parallelism provided by the multithreaded nature of many of
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the underlying MATLAB libraries. For details, see Run MATLAB on multicore and
multiprocessor machines .

Note Do not increase the number of threads across all workers on a machine to
exceed the number of physical cores. In other words, make sure that NumWorkers x
NumThreads =< number of physical cores on your machine. Otherwise you might have
reduced performance.

Use Your Cluster from MATLAB

To run parallel language functions, such as parpool or batch, on a cluster, set the
cluster profile as default, or use cluster objects.

Specify Default Cluster
To set a cluster profile as the default, use one of the following ways:

* On the Home tab in the Environment section, select Parallel > Select a Default
Cluster, and from there, all your profiles are available. The default profile is indicated.
You can select any profile in the list as the default.

» The Cluster Profile Manager indicates which is the default profile. You can select any
profile in the list, then select Set as Default.

* You can get or set the default profile programmatically by using the
parallel.defaultClusterProfile function. The following sets of commands
achieve the same thing:

parallel.defaultClusterProfile( 'MyMJSProfilel')
parpool

or
parpool('MyMISProfilel")
Specify Cluster Programmatically (parcluster)
The parcluster function creates a cluster object in your workspace according to the
specified profile. The profile identifies a particular cluster and applies property values.

For example,

c = parcluster('MyMISProfilel")

6-26


https://www.mathworks.com/discovery/matlab-multicore.html
https://www.mathworks.com/discovery/matlab-multicore.html

See Also

This command finds the cluster defined by the settings of the profile named
MyMJSProfilel and sets property values on the cluster object based on settings in the
profile. Use a cluster object in functions such as parpool or batch. By applying different
profiles, you can alter your cluster choices without changing your MATLAB application
code.

See Also

batch | createlob | parallel.defaultClusterProfile |
parallel.exportProfile | parallel.importProfile | parcluster | parpool |
setmcruserdata

Related Examples

. “Run Code on Parallel Pools” on page 2-71

. “Scale up from Desktop to Cluster”

. “Pass Parallel Computing Toolbox Profile at Run Time” (MATLAB Compiler)

. “Use Parallel Computing Toolbox in Deployed Applications” (MATLAB Compiler SDK)
. “Verify Network Communications for Cluster Discovery” (MATLAB Parallel Server)

More About

. “Getting Started with MATLAB Parallel Server” (MATLAB Parallel Server)
. “Clusters and Clouds”

External Websites

. https://www.mathworks.com/help/cloudcenter/
. https://www.mathworks.com/licensecenter
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Apply Callbacks to MATLAB Job Scheduler Jobs and Tasks

The MATLAB Job Scheduler has the ability to trigger callbacks in the client session
whenever jobs or tasks in the MATLAB Job Scheduler cluster change to specific states.

Client objects representing jobs and tasks in a MATLAB Job Scheduler cluster include the
following properties:

Callback |Object |Cluster |Description
Property Profile
Manag
er

Field

QueuedFc (Job only|JobQue |Specifies the function to execute in the client when a job
n uedFcn |is submitted to the MATLAB Job Scheduler queue

RunningF (Job or [JobRun |Specifies the function to execute in the client when a job
cn task ningFc |or task begins its execution
n

TaskRu
nningF
cn

Finished |Job or |JobFin |Specifies the function to execute in the client when a job
Fcn task ishedF |or task completes its execution
cn

TaskFi
nished
Fcn

You can set each of these properties to any valid MATLAB callback value in the Cluster
Profile Manager, see the table and “Add and Modify Cluster Profiles” on page 6-20. The
callback follows the same behavior for Handle Graphics®, passing into the callback
function the object (job or task) that makes the call and an empty argument of event data.

These properties apply only in the client MATLAB session in which they are set. Later
sessions that access the same job or task objects do not inherit the settings from previous
sessions. You can apply the properties to existing jobs and tasks at the command-line, but
the cluster profile settings apply only at the time these objects are first created.
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Note The callback properties are available only when using a MATLAB Job Scheduler
cluster.

Example 6.1. Create Callbacks at the Command Line

This example shows how to create job and task callbacks at the client session command
line.

Create and save a callback function clientTaskCompleted.m on the path of the
MATLAB client, with the following content:

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Create a job and set its QueuedFcn, RunningFcn, and FinishedFcn properties, using a
function handle to an anonymous function that sends information to the display.

parcluster('MyM3IS');

createJob(c, 'Name', 'Job 52a');

.QueuedFcn = @(job,eventdata) disp([job.Name ' now ' job.Statel);
.RunningFcn = @(job,eventdata) disp([job.Name ' now ' job.Statel);
.FinishedFcn = @(job,eventdata) disp([job.Name ' now ' job.Statel]);

[SE RS S oY

Create a task whose FinishedFcn is a function handle to the separate function.

createTask(j,@rand,1,{2,4}, .
'FinishedFcn',@clientTaskCompleted);

Run the job and note the output messages from both the job and task callbacks.
submit(j)

Job_52a now queued
Job_52a now running
Finished task: 1
Job_52a now finished

To use the same callbacks for any jobs and tasks on a given cluster, you should set these
properties in the cluster profile. For details on editing profiles in the profile manager, see
“Discover Clusters and Use Cluster Profiles” on page 6-15. These property settings apply
to any jobs and tasks created using a cluster derived from this profile. The sequence is
important, and must occur in this order:

1  Set the callback property values for the profile in the profile manager.
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2 Use the cluster profile to create a cluster object in MATLAB.
3  Use the cluster object to create jobs and then tasks.

Example 6.2. Set Callbacks in a Cluster Profile

This example shows how to set several job and task callback properties using the profile
manager.

Edit your MATLAB Job Scheduler cluster profile in the profile manager so that you can set
the callback properties to the same values in the previous example. The saves profile
looks like this:

CALLBACKS

Function that runs on @(job,eventdata)disp([job.Name," now ' job.State])
the dient when job

reaches the finished

state

JobFinishedFen

Function that runs on @(job,eventdata)disp{[job.Name," now ' job.State])
the dient when job

reaches the running

state

JobRunningFen

Function that runs on @(job,eventdata)disp([job.Name, now ',job.State])
the dient when job

reaches the queued

state

JobQueuedFcn

Function that runs on @diientTaskCompleted
the dient when task

reaches the finished

state

TaskFinishedFen

Function that runs on <none>
the dient when task

reaches the running

state

TaskRunningFcn

Create and save a callback function clientTaskCompleted.m on the path of the
MATLAB client, with the following content. (If you created this function for the previous
example, you can use that.)

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Create objects for the cluster, job, and task. Then submit the job. All the callback

properties are set from the profile when the objects are created.
c parcluster('MyMIS');

j createJob(c, 'Name', 'Job 52a');
createTask(j,@rand,1,{2,4});
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submit(j)

Job 52a now queued
Job 52a now running
Finished task: 1
Job 52a now finished

Tips

* You should avoid running code in your callback functions that might cause conflicts.
For example, if every task in a job has a callback that plots its results, there is no
guarantee to the order in which the tasks finish, so the plots might overwrite each
other. Likewise, the FinishFcn callback for a job might be triggered to start before
the FinishFcn callbacks for all its tasks are complete.

* Submissions made with batch use applicable job and task callbacks. Parallel pools
can trigger job callbacks defined by their cluster profile.
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Job Monitor

In this section...

“Typical Use Cases” on page 6-32
“Manage Jobs Using the Job Monitor” on page 6-33
“Identify Task Errors Using the Job Monitor” on page 6-33

The Job Monitor displays the jobs in the queue for the scheduler determined by your
selection of a cluster profile. Open the Job Monitor from the MATLAB desktop on the
Home tab in the Environment section, by selecting Parallel > Monitor Jobs.

4\ Job Monitor - ]

X

Select Profile: | local (default) ~ | [J Show jobs from all users >

ID  Username Submit Time Finish Time Tasks State Description
1 user200 Wed Jul 18 14:30:55 BST 2018 20 running Independent Job
2 user200 11 pending Independent Job

Last updated at Wed Jul 18 14:30:58 BST 2018 Auto update: Every Sminutes v | Update Now

The job monitor lists all the jobs that exist for the cluster specified in the selected profile.
You can choose any one of your profiles (those available in your current session Cluster
Profile Manager), and whether to display jobs from all users or only your own jobs.

Typical Use Cases

The Job Monitor lets you accomplish many different goals pertaining to job tracking and
queue management. Using the Job Monitor, you can:

* Discover and monitor all jobs submitted by a particular user

* Determine the status of a job

* Determine the cause of errors in a job

* Delete old jobs you no longer need

* Create a job object in MATLAB for access to a particular job in the queue
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Manage Jobs Using the Job Monitor

Using the Job Monitor you can manage the listed jobs for your cluster. Right-click on any
job in the list, and select any of the following options from the context menu. The
available options depend on the type of job.

* Cancel — Stops a running job and changes its state to ' finished"'. If the job is
pending or queued, the state changes to ' finished' without its ever running. This is
the same as the command-line cancel function for the job.

* Delete — Deletes the job data and removes the job from the queue. This is the same
as the command-line delete function for the job. Also closes and deletes an
interactive pool job.

* Show details — This displays detailed information about the job in the Command
Window.

* Show errors — This displays all the tasks that generated an error in that job, with
their error properties.

* Fetch outputs — This collects all the task output arguments from the job into the
client workspace.

Identify Task Errors Using the Job Monitor

Because the Job Monitor indicates if a job had a run-time error, you can use it to identify
the tasks that generated the errors in that job. For example, the following script
generates an error because it attempts to perform a matrix inverse on a vector:

A
B

[2 4 6 8];
inv(A);

If you save this script in a file named invert me.m, you can try to run the script as a
batch job on the default cluster:

batch('invert me')

When updated after the job runs, the Job Monitor includes the job created by the batch
command, with an error icon () for this job. Right-click the job in the list, and select
Show Errors. For all the tasks with an error in that job, the task information, including

properties related to the error, display in the MATLAB command window:

Task ID 1 from Job ID 2 Information
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State :
: @parallel.internal.cluster.executeScript

Function

StartTime :
: 0 days Oh Om 1s

Running Duration

- Task Result Properties

ErrorIdentifier :
: Matrix must be square.

ErrorMessage

Error Stack :

finished

Tue Jun 28 11:46:28 EDT 2011

MATLAB:square

invert me (line 2)
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Programming Tips

In this section...

“Program Development Guidelines” on page 6-35

“Current Working Directory of a MATLAB Worker” on page 6-36
“Writing to Files from Workers” on page 6-37

“Saving or Sending Objects” on page 6-37

“Using clear functions” on page 6-37

“Running Tasks That Call Simulink Software” on page 6-38
“Using the pause Function” on page 6-38

“Transmitting Large Amounts of Data” on page 6-38
“Interrupting a Job” on page 6-38

“Speeding Up a Job” on page 6-38

Program Development Guidelines

When writing code for Parallel Computing Toolbox software, you should advance one step
at a time in the complexity of your application. Verifying your program at each step
prevents your having to debug several potential problems simultaneously. If you run into
any problems at any step along the way, back up to the previous step and reverify your
code.

The recommended programming practice for distributed or parallel computing
applications is

1 Run code normally on your local machine. First verify all your functions so that
as you progress, you are not trying to debug the functions and the distribution at the
same time. Run your functions in a single instance of MATLAB software on your local
computer. For programming suggestions, see “Techniques to Improve Performance”
(MATLAB).

2 Decide whether you need an independent or communicating job. If your
application involves large data sets on which you need simultaneous calculations
performed, you might benefit from a communicating job with distributed arrays. If
your application involves looped or repetitive calculations that can be performed
independently of each other, an independent job might be appropriate.
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3 Modify your code for division. Decide how you want your code divided. For an
independent job, determine how best to divide it into tasks; for example, each
iteration of a for-loop might define one task. For a communicating job, determine how
best to take advantage of parallel processing; for example, a large array can be
distributed across all your workers.

4 Use pmode to develop parallel functionality. Use pmode with the local scheduler
to develop your functions on several workers in parallel. As you progress and use
pmode on the remote cluster, that might be all you need to complete your work.

5 Run the independent or communicating job with a local scheduler. Create an
independent or communicating job, and run the job using the local scheduler with
several local workers. This verifies that your code is correctly set up for batch
execution, and in the case of an independent job, that its computations are properly
divided into tasks.

6 Run the independent job on only one cluster node. Run your independent job
with one task to verify that remote distribution is working between your client and
the cluster, and to verify proper transfer of additional files and paths.

7 Run the independent or communicating job on multiple cluster nodes. Scale
up your job to include as many tasks as you need for an independent job, or as many
workers as you need for a communicating job.

Note The client session of MATLAB must be running the Java® Virtual Machine JVM™)
to use Parallel Computing Toolbox software. Do not start MATLAB with the -nojvm flag.

Current Working Directory of a MATLAB Worker

The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME WORKERNAME mlworker log\work

where CHECKPOINTBASE is defined in the mjs_def file, HOSTNAME is the name of the
node on which the worker is running, and WORKERNAME is the name of the MATLAB
worker session.

For example, if the worker named worker22 is running on host nodeA52, and its
CHECKPOINTBASE value is C:\TEMP\MJS\Checkpoint, the starting current directory for
that worker session is

C:\TEMP\mjs\Checkpoint\nodeA52 worker22 mlworker log\work
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Writing to Files from Workers

When multiple workers attempt to write to the same file, you might end up with a race
condition, clash, or one worker might overwrite the data from another worker. This might
be likely to occur when:

* There is more than one worker per machine, and they attempt to write to the same
file.

* The workers have a shared file system, and use the same path to identify a file for
writing.

In some cases an error can result, but sometimes the overwriting can occur without error.
To avoid an issue, be sure that each worker or parfor iteration has unique access to any
files it writes or saves data to. There is no problem when multiple workers read from the
same file.

Saving or Sending Objects

Do not use the save or load function on Parallel Computing Toolbox objects. Some of the
information that these objects require is stored in the MATLAB session persistent memory
and would not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel computing
processes by means of an object's properties. For example, you cannot pass a MATLAB
Job Scheduler, job, task, or worker object to MATLAB workers as part of a job's JobData
property.

Also, system objects (e.g., Java classes, .NET classes, shared libraries, etc.) that are
loaded, imported, or added to the Java search path in the MATLAB client, are not
available on the workers unless explicitly loaded, imported, or added on the workers,
respectively. Other than in the task function code, typical ways of loading these objects
might be in taskStartup, jobStartup, and in the case of workers in a parallel pool, in
poolStartup and using pctRunOnAlLl.

Using clear functions

Executing

clear functions
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clears all Parallel Computing Toolbox objects from the current MATLAB session. They still
remain in the MATLAB Job Scheduler. For information on recreating these objects in the
client session, see “Recover Objects” on page 7-14.

Running Tasks That Call Simulink Software

The first task that runs on a worker session that uses Simulink software can take a long
time to run, as Simulink is not automatically started at the beginning of the worker
session. Instead, Simulink starts up when first called. Subsequent tasks on that worker
session will run faster, unless the worker is restarted between tasks.

Using the pause Function

On worker sessions running on Macintosh or UNIX operating systems, pause(Inf)
returns immediately, rather than pausing. This is to prevent a worker session from
hanging when an interrupt is not possible.

Transmitting Large Amounts of Data

Operations that involve transmitting many objects or large amounts of data over the
network can take a long time. For example, getting a job's Tasks property or the results
from all of a job's tasks can take a long time if the job contains many tasks. See also
“Attached Files Size Limitations” on page 6-53.

Interrupting a Job

Because jobs and tasks are run outside the client session, you cannot use Ctrl+C (~C) in
the client session to interrupt them. To control or interrupt the execution of jobs and
tasks, use such functions as cancel, delete, demote, promote, pause, and resume.

Speeding Up a Job

You might find that your code runs slower on multiple workers than it does on one
desktop computer. This can occur when task startup and stop time is significant relative
to the task run time. The most common mistake in this regard is to make the tasks too
small, i.e., too fine-grained. Another common mistake is to send large amounts of input or
output data with each task. In both of these cases, the time it takes to transfer data and
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initialize a task is far greater than the actual time it takes for the worker to evaluate the
task function.
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Control Random Number Streams on Workers

In this section...

“Client and Workers” on page 6-40
“Different Workers” on page 6-42
“Normally Distributed Random Numbers” on page 6-43

The random number generation functions rand, randi, and randn behave differently for
parallel calculations compared to your MATLAB client. You can change the behavior of
random number generators on parallel workers or on the client to generate reproducible
streams of random numbers.

By default, the MATLAB client and MATLAB workers use different random number
generators, even if the workers are part of a local cluster on the same machine as the
client. The table below summarizes the default settings for the client and workers:

Generator Seed Normal Transform
Client 'Twister' or 0 'Ziggurat'
'mt19937ar'
Worker (local or '"Threefry' or 0 'Inversion'
remote) 'Threefry4x64 20'

6-40

For more information about the available generators and normal transforms, see
“Choosing a Random Number Generator” (MATLAB). Each worker in a cluster draws
random numbers from an independent stream with the properties in the table. By default,
the random numbers generated on each worker in a parfor loop are different from each
other and from the random numbers generated on the client.

Note If you have a GPU on your worker, different settings apply to random number
streams on the GPU. For more information, see “Random Number Streams on a GPU” on
page 9-7.

Client and Workers

If it is necessary to generate the same stream of numbers in the client and workers, you
can set one to match the other. You can set the generator algorithm and seed using rng.
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For example, you might run a script as a batch job on a worker, and need the same
generator or sequence as the client. Suppose you start with a script file named
randScriptl.m that contains the line:

R = rand(1,4);

You can run this script in the client, and then as a batch job on a worker. Notice that the
default generated random number sequences in the results are different.

randScriptl; % In client
R

R:
0.8147 0.9058 0.1270 0.9134

parallel.defaultClusterProfile('local"')
c = parcluster();

j = batch(c, 'randScriptl'); % On worker
wait(j);load(j);

R

R —
0.1349 0.6744 0.9301 0.5332

For identical results, you can set the client and worker to use the same generator and
seed. Here, the file randScript2.m contains the following code:

rng(1l, 'Threefry');
R = rand(1,4);

Now, run the new script in the client and on a worker:

randScript2; % In client
R

R 3
0.1404 0.8197 0.1073 0.4131

j = batch(c, 'randScript2'); % On worker

wait(j); load(j);

R

R =
0.1404 0.8197 0.1073 0.4131
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Different Workers

By default, each worker in a cluster working on the same job has an independent random
number stream. If rand, randi, or randn are called in parallel, each worker produces a
unique sequence of random numbers.

Note Because rng('shuffle') seeds the random number generator based on the
current time, do not use this command to set the random number stream on different
workers if you want to ensure independent streams. This is especially true when the
command is sent to multiple workers simultaneously, such as inside a parfor, spmd, or a
communicating job. For independent streams on the workers, use the default behavior; or
if that is not sufficient for your needs, consider using a unique substream on each worker
using RandStream.

This example uses two workers in a parallel pool to show they generate unique random
number sequences.

p = parpool(2);
spmd
R = rand(1,4); % Different on each worker

end
R{1},R{2}
ans =

0.1349 0.6744 0.9301 0.5332
ans =

0.6383 0.5195 0.1398 0.6509
delete(p)

If you need all workers to generate the same sequence of numbers, you can set each
worker to use the same generator settings:

p = parpool(2);
spmd

rng(0, 'Philox"'); % Default seed 0.

R = rand(1,4); % Same on all workers
end

R{1},R{2}

ans =
0.3655 0.6975 0.1789 0.4549



See Also

ans =
0.3655 0.6975 0.1789 0.4549

delete(p)

If you need to control the random numbers at each iteration of a parfor-loop, see
“Repeat Random Numbers in parfor-Loops” on page 2-77.

Normally Distributed Random Numbers

If you are working with normally distributed random numbers using the randn function,
you can use the same methods as above using RandStream to set the generator type,
seed, and normal transformation algorithm on each worker and the client.

For example, suppose the file randScript3.m contains the code:

stream = RandStream('Threefry', 'Seed',0, 'NormalTransform', 'Inversion');
RandStream.setGlobalStream(stream);
R = randn(1,7)

You can run this code on the client and on a worker in a parallel job (using batch or
spmd) to produce the same sequence of random numbers:

R =
-0.3479 0.1057 0.3969 0.6544 -1.8228 0.9587 0.5360
See Also
RandStream | rng
More About
. “Repeat Random Numbers in parfor-Loops” on page 2-77
. “Random Number Streams on a GPU” on page 9-7

. “Creating and Controlling a Random Number Stream” (MATLAB)
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Profiling Parallel Code

6-44

In this section...

“Introduction” on page 6-44
“Collecting Parallel Profile Data” on page 6-44

“Viewing Parallel Profile Data” on page 6-45

Introduction

The parallel profiler provides an extension of the profile command and the profile
viewer specifically for communicating jobs, to enable you to see how much time each
worker spends evaluating each function and how much time communicating or waiting
for communications with the other workers. Before using the parallel profiler, familiarize
yourself with the standard profiler and its views, as described in “Profile to Improve
Performance” (MATLAB).

Note The parallel profiler works on communicating jobs, including inside pmode. It does
not work on parfor-loops.

Collecting Parallel Profile Data

For parallel profiling, you use the mpiprofile command within your communicating job
(often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following line in your
communicating job task code file, or type at the pmode prompt in the Parallel Command
Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each worker and
the communications between the workers. Such information includes:

» Execution time of each function on each worker

» Execution time of each line of code in each function

* Amount of data transferred between each worker
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* Amount of time each worker spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the profiler
collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

P>> mpiprofile status

For a complete list of options regarding profiler data details, clearing data, etc., see the
mpiprofile reference page.

Viewing Parallel Profile Data

To open the parallel profile viewer from pmode, type in the Parallel Command Window:

P>> mpiprofile viewer

The remainder of this section is an example that illustrates some of the features of the
parallel profile viewer. This example executes in a pmode session running on four local
workers. Initiate pmode by typing in the MATLAB Command Window:

pmode start local 4

When the Parallel Command Window (pmode) starts, type the following code at the
pmode prompt:

P>> R1 rand(16, codistributor())
P>> R2 rand(16, codistributor())
P>> mpiprofile on

P>> P = R1*R2

P>> mpiprofile off

P>> mpiprofile viewer

The last command opens the Profiler window, first showing the Parallel Profile Summary
(or function summary report) for worker (lab) 1.
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The function summary report displays the data for each function executed on a worker in
sortable columns with the following headers:

Column Header

Description

Calls How many times the function was called on this worker
Total Time The total amount of time this worker spent executing this function
Self Time The time this worker spent inside this function, not within

children or local functions

Total Comm Time

The total time this worker spent transferring data with other
workers, including waiting time to receive data

Self Comm Waiting
Time

The time this worker spent during this function waiting to receive
data from other workers

Total Interlab Data

The amount of data transferred to and from this worker for this
function

Computation Time
Ratio

The ratio of time spent in computation for this function vs. total
time (which includes communication time) for this function
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Column Header

Description

Total Time Plot

Bar graph showing relative size of Self Time, Self Comm Waiting
Time, and Total Time for this function on this worker

Select the name of any function in the list for more details about the execution of that
function. The function detail report for codistributed.mtimes includes this listing:

Bi Profiler 9 [ 3
Fie Edt Debug Desktop Window Help £
e | M
X =l
Parents (calling functions) -
No parent
Lines where the most time was spent.
Comm Active
Line Total Data Data %
Waiti ;
Number Code Calls Time Sent Rec \ja.mng (;Dmm Tim. Time Plot | _|
ime Time
145 |Ploc = labSendReceive(to, from... |3 |ng7gc 171Kb 171Kb 0079s [0.005s | 63.4%  mummmmm
149 ¢ = codistributed(Cloc,codistr... 1 0.030s 0b 0b 0s 0s 24.4% | mm
139 k = partitionIndices (Apart,lab... 1 00155 0b 06 0s 0s 122% m
151 end 1 |0s 0b 0b 0s 0s 0%
130 2t 1 |os 0b 0b 0s 0s 0%
Al other 0000s 0b 0b 0s 0s 0.0%
lines
Totals 0.124s 1.71Kb 1.71Kb 0.079s | 0.005s |100%
** Comnmmication statistics are not available for Scal APACK functions. so data marked with ** might be inaccurate. =
1 | _'l_I

2

The code that is displayed in the report is taken from the client. If the code has changed
on the client since the communicating job ran on the workers, or if the workers are
running a different version of the functions, the display might not accurately reflect what
actually executed.

You can display information for each worker, or use the comparison controls to display
information for several workers simultaneously. Two buttons provide Automatic
Comparison Selection, allowing you to compare the data from the workers that took the
most versus the least amount of time to execute the code, or data from the workers that
spent the most versus the least amount of time in performing interworker communication.
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Manual Comparison Selection allows you to compare data from specific workers or
workers that meet certain criteria.

The following listing from the summary report shows the result of using the Automatic
Comparison Selection of Compare (max vs. min TotalTime). The comparison shows
data from worker (lab) 3 compared to worker (lab) 1 because these are the workers that
spend the most versus least amount of time executing the code.

B Profiler =13
File Edit Debug Desktop Window Help ~
B -
a3 =
Parents (calling functions) B
No parent
Lines where the most time was spent including the top 5 code lines from the comparison lab(maroon) J
Line .
Nuzber | . cye Tod  Daa  Dam S‘?‘,‘E‘ ’éc“‘a % |Time
forlab3 | o * | Time | Semt  |Rec vatmg | MOmE | Tone | Plot
and /) Time Time
. Zloc = labSendReceive (to, frem... 3 0.114s 171Kb 171Kb | 0001s |0123s |542%
13 ’ 3 0.078s | L71IKb | 1L.71Kb | 0.0795 | 0.005s |G3.4% '
149 ¢ = codistributed(Cloc,codistr... 1 0.049s 0b Ob 0s 0s 23.2% r
I 0.030s 0B 0b Os Os 24.4%
139 k = partitionIndices(Apart,lab... 1 0.032s 0b Ob 0s 0s r
I 0.015s (0B 0b 0s 0s
144 mwTagd = 32116; 3 0.015s 0b 0b 0s 0s 74% g
3 0s 0b 0b 0s 0s 0%
151 end 1 0s 0b Ob Os Os 0%
2

The following figure shows a summary of all the functions executed during the profile
collection time. The Manual Comparison Selection of max Time Aggregate means
that data is considered from all the workers for all functions to determine which worker
spent the maximum time on each function. Next to each function's name is the worker
that took the longest time to execute that function. The other columns list the data from
that worker.
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B Profiler J9[=] E3
Fle Edt Debug Desktop Window Help »

Ca g LA

I Aggregats LI
Parallel Profile Summary Generated 09-Jun-2008 16:44:20 using real time. =

Showing all functions called in lab max time

A ic C i Selecti Manual Comparison Selection Show Figures (all labs):
Compare (max vs. min TotalTime) I Go to lab:| max Time Aggregate hd

Plot Time Histograms
Plot All PerLab Communication
Compare (max vs. min CommTime) I Compare with: | None i Plot CommTimePerLab =

** Communication statistics are not available for Scal APACK functions, so data marked with ** might be inaccurate.

Function Name Calls Total Self Total Self Comm Total Computation Total Time Plot
Time Tme* Comm Waiting, Interlab Time Ratio  (dark band is self time

Ths s Data and orange band is
- - - self waiting time)

codistributed mtimes (lab 3) 1 0209s 01295 0.124s 0.001s 342Kb  40.8% I

codistributed codistributed (lab 2) 1 0077s | 0.06ls Os 0s 0b 100.0% 1

partitionIndices (lab 3) 4 0032s 0.032s 0s 0s 0b 100.0% -

codistributor (lab 2) 1 0030s | 0.030s 0s 0s 0b 100.0% |

-

4

The next figure shows a summary report for the workers that spend the most versus least
time for each function. A Manual Comparison Selection of max Time Aggregate
against min Time >0 Aggregate generated this summary. Both aggregate settings
indicate that the profiler should consider data from all workers for all functions, for both
maximum and minimum. This report lists the data for codistributed.mtimes from
workers 3 and 1, because they spent the maximum and minimum times on this function.
Similarly, other functions are listed.
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Hi Profiler (- [Ofx]
Fle Edt Debug Desktop Window Help ~

fm g} | A

I Aggregats LI
Parallel Profile Summary Generated 09-Jun-2008 16:45:35 using real time. =

Showing all functions called in lab max time compared with lab min time

A . O : Calacth Manual Comparison Selection Show Figures (all labs):
Compare (max vs. min TotalTime) I Go to lab:| max Time Aggregate hd -

Plot Time Histograms
- Plot All PerLab Communication
Compare (max vs. min CommTime) I Compare with:| min Time >0 Aggregate = Plot CommTimePerLab =

** (Communication stafistics are not available for Scal APACK functions, so data marked with ** might be inaccurate.

Function Name Calls Total  Self Total Self Comm Total Computation Total Time Plot
comparison with lab min time Time Time* Comm Waiting Interlab Time Ratio  (dark band is self time
T T Data and orange band is self
- - - waiting time)
codistributed mtimes (lab 3) 1 0209s 0129s 0.124s 0001s 342Kb  40.8% I
codistributed.mtimes (lab 1) 1 01245 |0.078s |0.084 5 0.079 5 3.42Kb 32.4% L]
codistributed. codistributed (lab 2) 1 0077s 0061s 0s 0s 0b 100.0% 1
codistributed.codistributed (lab 1) 1 0.014s 0.0i4ds |05 Os 0b 100.0% |
partitionIndices (lab 3) 4 0.032s 0.032s 0s 0s 0b 100.0% -

Select a function name in the summary listing of a comparison to get a detailed
comparison. The detailed comparison for codistributed.mtimes looks like this,
displaying line-by-line data from both workers:

B Profiler (O] <]
Fie Edt Debug Desktop Window Help £
fam o g} |
[1ap3 =1
Parents (calling fanctions)

No parent

Lines where the most time was spent including the top 5 code lines from the comparison lab(maroon) J

Line .

Number | cye Tod  Daa  Dam ‘C“ﬁf ég:; %  Time

(for lab 3 Time  Sent | Rec S Time | Plot

. Time Time
and /)
145 Aloc = labSendReceive (to, from... 3 0.114s 1.71Kb | 1.71Kb | 0.001s |0.123s |542%
- 3 0.078 s Kb |1.71Kb | 0.079s | 0.005s
p C = codistributed(Cloc,codistr... 1 0.049s 0b 0b 0s 0s 23.2%
149 - il I - - - .y |
0.030s 0B 0b 0s 0s 24
139 k = partitionIndices (Apart,lab... 1 0.032s 0b Ob Os Os
I 0.015s | 0b 0b 0s 0s
| | _’l_l
2
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To see plots of communication data, select Plot All PerLab Communication in the
Show Figures menu. The top portion of the plot view report plots how much data each
worker receives from each other worker for all functions.

B Profiler o] x]
File Edt Debug Deskiop Windaw Help ~
R

5|Agg.egate =l

Plot View

Generated 09-Jun-2008 16:51:44 using real time.
PerLab Communication Images

No Plat
Plot Time Histograms

destination lab index

Plot All PerLab Communication
Show Figures (alllabs): |PlotCommTimePerLab

All Labs Data Received Per Lab

for all functions

2 3
source lab index

=

1.71Kb
1600 (max)

1400

1200

1000
800

600

400
200

0

N

s

A

To see only a plot of interworker communication times, select Plot CommTimePerLab in
the Show Figures menu.
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B Profiler 18 [=] 3
Fie Edt Debug Desktop Window Help ~
P g} |

EIAgglegate LI
Plot View

Generated 09-Jun-2008 16:52:05 using real time.
Comm Time Per Lab Image

No Plot =
Plot Time Histograms
Plot All PerLab Communication

[ e PRl Plot CommTimePerlab

All Labs Receive Comm Time Per Lab
for all functions

0.12 0.12s
(max)

0.1

0.08

0.06

destination lab index

0.04

0.02

1 2 3 4
source lab index

| | »

7

Plots like those in the previous two figures can help you determine the best way to

balance work among your workers, perhaps by altering the partition scheme of your
codistributed arrays.
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Troubleshooting and Debugging

In this section...

“Attached Files Size Limitations” on page 6-53

“File Access and Permissions” on page 6-53

“No Results or Failed Job” on page 6-55

“Connection Problems Between the Client and MATLAB Job Scheduler” on page 6-55
“SFTP Error: Received Message Too Long” on page 6-56

Attached Files Size Limitations

The combined size of all attached files for a job is limited to 4 GB.

File Access and Permissions
Ensuring That Workers on Windows Operating Systems Can Access Files

By default, a worker on a Windows operating system is installed as a service running as
LocalSystenm, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem to access
UNC or mapped network shares. In this case, you must run the mjs service under a
different user with rights to log on as a service. See the section “Set the User” (MATLAB
Parallel Server) in the MATLAB Parallel Server System Administrator's Guide.

Task Function Is Unavailable

If a worker cannot find the task function, it returns the error message

Error using ==> feval
Undefined command/function 'function name'.

The worker that ran the task did not have access to the function function name. One
solution is to make sure the location of the function’s file, function name.m, is included
in the job’s AdditionalPaths property. Another solution is to transfer the function file
to the worker by adding function name.m to the AttachedFiles property of the job.
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Load and Save Errors

If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save

Unable to write file myfile.mat: permission denied.

??? Error using ==> load

Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

* What is the worker’s current folder?

* Can the worker find the file or folder?

* What user is the worker running as?

* Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State

A job or task might get stuck in the queued state. To investigate the cause of this
problem, look for the scheduler’s logs:
* Platform LSF schedulers might send emails with error messages.

* Microsoft Windows HPC Server (including CCS), LSF®, PBS Pro, and TORQUE save
output messages in a debug log. See the getDebuglLog reference page.

» If using a generic scheduler, make sure the submit function redirects error messages
to a log file.

Possible causes of the problem are:

* The MATLAB worker failed to start due to licensing errors, the executable is not on
the default path on the worker machine, or is not installed in the location where the
scheduler expected it to be.

* MATLAB could not read/write the job input/output files in the scheduler’s job storage
location. The storage location might not be accessible to all the worker nodes, or the
user that MATLAB runs as does not have permission to read/write the job files.

» Ifusing a generic scheduler:

* The environment variable MDCE_DECODE_FUNCTION was not defined before the
MATLAB worker started.

* The decode function was not on the worker’s path.
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No Results or Failed Job
Task Errors

If your job returned no results (i.e., fetchOutputs (job) returns an empty cell array), it
is probable that the job failed and some of its tasks have their Error properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job object
yourjob.

Debug Logs

If you are using a supported third-party scheduler, you can use the getDebuglLog
function to read the debug log from the scheduler for a particular job or task.

For example, find the failed job on your LSF scheduler, and read its debug log:

c = parcluster('my 1sf profile')
failedjob = findJob(c, 'State', 'failed');
message = getDebuglLog(c, failedjob(1l))

Connection Problems Between the Client and MATLAB Job
Scheduler

For testing connectivity between the client machine and the machines of your compute
cluster, you can use Admin Center. For more information about Admin Center, including
how to start it and how to test connectivity, see “Start Admin Center” (MATLAB Parallel
Server) and “Test Connectivity” (MATLAB Parallel Server).

Detailed instructions for other methods of diagnosing connection problems between the
client and MATLAB Job Scheduler can be found in some of the Bug Reports listed on the
MathWorks Web site.

The following sections can help you identify the general nature of some connection
problems.
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Client Cannot See the MATLAB Job Scheduler

If you cannot locate or connect to your MATLAB Job Scheduler with parcluster, the
most likely reasons for this failure are:

The MATLAB Job Scheduler is currently not running.
Firewalls do not allow traffic from the client to the MATLAB Job Scheduler.

The client and the MATLAB Job Scheduler are not running the same version of the
software.

The client and the MATLAB Job Scheduler cannot resolve each other’s short
hostnames.

The MATLAB Job Scheduler is using a nondefault BASE PORT setting as defined in the
mjs_def file, and the Host property in the cluster profile does not specify this port.

MATLAB Job Scheduler Cannot See the Client

If a warning message says that the MATLAB Job Scheduler cannot open a TCP connection
to the client computer, the most likely reasons for this are

Firewalls do not allow traffic from the MATLAB Job Scheduler to the client.

The MATLAB Job Scheduler cannot resolve the short hostname of the client computer.
Use pctconfig to change the hostname that the MATLAB Job Scheduler will use for
contacting the client.

SFTP Error: Received Message Too Long

The example code for generic schedulers with non-shared file systems contacts an sftp
server to handle the file transfer to and from the cluster’s file system. This use of sftp is
subject to all the normal sftp vulnerabilities. One problem that can occur results in an
error message similar to this:

Caused by:

Error using ==> RemoteClusterAccess>RemoteClusterAccess.waitForChoreToFinishOrError at 780
The following errors occurred in the
com.mathworks.toolbox.distcomp.clusteraccess.UploadFilesChore:
Could not send Job3.common.mat for job 3:
One of your shell's init files contains a command that is writing to stdout,
interfering with sftp. Access help
com.mathworks.toolbox.distcomp.remote.spi.plugin.SftpExtraBytesFromShellException:
One of your shell's init files contains a command that is writing to stdout,
interfering with sftp.
Find and wrap the command with a conditional test, such as

if ($?TERM != 0) then
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if ("$TERM" != "dumb") then
/your command/
endif
endif

: 4: Received message is too long: 1718579037

The telling symptom is the phrase "Received message is too long:" followed by a
very large number.

The sftp server starts a shell, usually bash or tcsh, to set your standard read and write
permissions appropriately before transferring files. The server initializes the shell in the
standard way, calling files like .bashrc and .cshrc. This problem happens if your shell
emits text to standard out when it starts. That text is transferred back to the sftp client
running inside MATLAB, and is interpreted as the size of the sftp server's response
message.

To work around this error, locate the shell startup file code that is emitting the text, and
either remove it or bracket it within if statements to see if the sftp server is starting the
shell:

if ($?TERM != 0) then

if ("$TERM" != "dumb") then
/your command/
endif
endif

You can test this outside of MATLAB with a standard UNIX or Windows sftp command-line
client before trying again in MATLAB. If the problem is not fixed, the error message
persists:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
Received message too long 1718579042

If the problem is fixed, you should see:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
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Big Data Workflow Using Tall Arrays and Datastores

In this section...

“Running Tall Arrays in Parallel” on page 6-59
“Use mapreducer to Control Where Your Code Runs” on page 6-60

1. 2. 3. 4,
Put data in Clean data Convert datastore Extract subset
a datastore to tall array of data

v

8. 7. 6. 5.
) o T . Write
Share results Run code on the Run code on the V r_lt't. and
whole data set subset of data refine code

T

The illustration shows a typical workflow that uses tall arrays to analyze a large data set.
In this workflow, you analyze a small subset of the data before scaling up to analyze the
entire data set. Parallel computing can help you scale up from steps six to seven. That is,

after checking that your code works on the small data set, run it on the whole data set.
You can use MATLAB to enhance this workflow.
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Problem Solution Required More Information
Products
Is your data | To work with out-of- MATLAB “Tall Arrays” (MATLAB)
too big? memory data with any
number of rows, use tall
arrays.

This workflow is well
suited to data analytics
and machine learning.

Use tall arrays in MATLAB “Use Tall Arrays on a Parallel
parallel on your local Pool” on page 6-61
machine. Parallel Computing
Toolbox
Use tall arrays in MATLAB “Use Tall Arrays on a Spark
parallel on your cluster. Enabled Hadoop Cluster” on
Parallel Computing |page 6-65
Toolbox
MATLAB Parallel
Server
If your data is large in |MATLAB “Distributing Arrays to
multiple dimensions, Parallel Workers” on page 3-
use distributed Parallel Computing |13
instead. Toolbox

MATLAB Parallel
Server

Running Tall Arrays in Parallel

Parallel Computing Toolbox can immediately speed up your tall array calculations by
using the full processing power of multicore computers to execute applications with a
parallel pool of workers. If you already have Parallel Computing Toolbox installed, then
you probably do not need to do anything special to take advantage of these capabilities.
For more information about using tall arrays with Parallel Computing Toolbox, see “Use
Tall Arrays on a Parallel Pool” on page 6-61.
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Use mapreducer to Control Where Your Code Runs

When you execute tall arrays, the default execution environment uses either the local
MATLAB session, or a local parallel pool if you have Parallel Computing Toolbox. The
default pool uses local workers, typically one worker for each core in your machine. Use
the mapreducer function to change the execution environment of tall arrays to use a
different cluster.

One of the benefits of developing your algorithms with tall arrays is that you only need to
write the code once. You can develop your code locally, then use mapreducer to scale up
and take advantage of the capabilities offered by Parallel Computing Toolbox and
MATLAB Parallel Server.

See Also

datastore | gather | mapreducer | tall

Related Examples

. “Use Tall Arrays on a Parallel Pool” on page 6-61

. “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 6-65
. “Tall Arrays” (MATLAB)

. “Choose a Parallel Computing Solution” on page 1-20

More About
. “Datastore” (MATLAB)
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Use Tall Arrays on a Parallel Pool

If you have Parallel Computing Toolbox, you can use tall arrays in your local MATLAB
session, or on a local parallel pool. You can also run tall array calculations on a cluster if
you have MATLAB Parallel Server installed. This example uses the workers in a local
cluster on your machine. You can develop code locally, and then scale up, to take
advantage of the capabilities offered by Parallel Computing Toolbox and MATLAB Parallel
Server without having to rewrite your algorithm. See also “Big Data Workflow Using Tall
Arrays and Datastores” on page 6-58.

Create a datastore and convert it into a tall table.

ds = datastore('airlinesmall.csv');
varnames = {'ArrDelay', 'DepDelay'};
ds.SelectedVariableNames = varnames;
ds.TreatAsMissing = 'NA';

If you have Parallel Computing Toolbox installed, when you use the tall function,
MATLAB automatically starts a parallel pool of workers, unless you turn off the default
parallel pool preference. The default cluster uses local workers on your machine.

Note If you want to turn off automatically opening a parallel pool, change your parallel
preferences. If you turn off the Automatically create a parallel pool option, then you
must explicitly start a pool if you want the tall function to use it for parallel processing.
See “Specify Your Parallel Preferences” on page 6-12.

If you have Parallel Computing Toolbox, you can run the same code as the MATLAB tall
table example (MATLAB) and automatically execute it in parallel on the workers of your
local machine.

Create a tall table tt from the datastore.
tt = tall(ds)

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
tt =
Mx2 tall table

ArrDelay DepDelay
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8 12
8 1
21 20
13 12
4 -1
59 63
3 -2

11 -1

The display indicates that the number of rows, M, is not yet known. M is a placeholder until
the calculation completes.

Extract the arrival delay ArrDelay from the tall table. This action creates a new tall
array variable to use in subsequent calculations.

a = tt.ArrDelay;

You can specify a series of operations on your tall array, which are not executed until you
call gather. Doing so enables you to batch up commands that might take a long time. For
example, calculate the mean and standard deviation of the arrival delay. Use these values
to construct the upper and lower thresholds for delays that are within 1 standard
deviation of the mean.

m mean(a, 'omitnan');
S std(a, 'omitnan');
one_sigma bounds = [m-s m m+s];

Use gather to calculate one_sigma bounds, and bring the answer into memory.
sigl = gather(one sigma bounds)

Evaluating tall expression using the Parallel Pool 'local':

- Pass 1 of 1: Completed in 4.5 sec

Evaluation completed in 6.3 sec

sigl =

-23.4572 7.1201  37.6975



See Also

You can specify multiple inputs and outputs to gather if you want to evaluate several
things at once. Doing so is faster than calling gather separately on each tall array . As an
example, calculate the minimum and maximum arrival delay.

[max_delay, min_delay] = gather(max(a),min(a))

max_delay =

1014

min delay =
-64

If you want to develop in serial and not use local workers or your specified cluster, enter
the following command.

mapreducer(0) ;

If you use mapreducer to change the execution environment after creating a tall array,
then the tall array is invalid and you must recreate it. To use local workers or your
specified cluster again, enter the following command.

mapreducer(gcp);

Note One of the benefits of developing algorithms with tall arrays is that you only need
to write the code once. You can develop your code locally, and then use mapreducer to
scale up to a cluster, without needing to rewrite your algorithm. For an example, see “Use
Tall Arrays on a Spark Enabled Hadoop Cluster” on page 6-65.

See Also

datastore | gather | mapreducer | parpool | table | tall

Related Examples
. “Big Data Workflow Using Tall Arrays and Datastores” on page 6-58

. “Use Tall Arrays on a Spark Enabled Hadoop Cluster” on page 6-65
. “Tall Arrays” (MATLAB)
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More About
. “Datastore” (MATLAB)
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Use Tall Arrays on a Spark Enabled Hadoop Cluster

Creating and Using Tall Tables

This example shows how to modify a MATLAB example of creating a tall table to run on a
Spark enabled Hadoop® cluster. You can use this tall table to create tall arrays and
calculate statistical properties. You can develop code locally and then scale up, to take
advantage of the capabilities offered by Parallel Computing Toolbox and MATLAB Parallel
Server without having to rewrite your algorithm. See also “Big Data Workflow Using Tall
Arrays and Datastores” on page 6-58 and “Configure a Hadoop Cluster” (MATLAB Parallel
Server)

First, you must set environment variables and cluster properties as appropriate for your
specific Spark enabled Hadoop cluster configuration. See your system administrator for
the values for these and other properties necessary for submitting jobs to your cluster.

setenv('HADOOP HOME', '/path/to/hadoop/install')
setenv('SPARK HOME', '/path/to/spark/install');
cluster = parallel.cluster.Hadoop;

% Optionally, if you want to control the exact number of workers:
cluster.SparkProperties('spark.executor.instances') = '16';

mapreducer(cluster);

Note In the setup step, you use mapreducer to set the cluster execution environment. In
the next step, you create a tall array. If you modify or delete the cluster execution
environment after creating a tall array, then the tall array is invalid and you must recreate
it.

Note If you want to develop in serial and not use local workers, enter the following
command.

mapreducer(0) ;

After setting your environment variables and cluster properties, you can run the MATLAB
tall table example (MATLAB) on the Spark enabled Hadoop cluster instead of on your
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local machine. Create a datastore and convert it into a tall table. MATLAB automatically
starts a Spark job to run subsequent calculations on the tall table.

ds = datastore('airlinesmall.csv');
varnames = {'ArrDelay', 'DepDelay'};

ds.SelectedVariableNames = varnames;
ds.TreatAsMissing = 'NA';

Create a tall table tt from the datastore.
tt = tall(ds)
Starting a Spark Job on the Hadoop cluster. This could take a few minutes ...done.
tt =
Mx2 tall table

ArrDelay DepDelay

8 12
8 1
21 20
13 12
4 -1
59 63
3 -2

11 -1

The display indicates that the number of rows, M, is not yet known. M is a placeholder until
the calculation completes.

Extract the arrival delay ArrDelay from the tall table. This action creates a new tall
array variable to use in subsequent calculations.

a = tt.ArrDelay;

You can specify a series of operations on your tall array, which are not executed until you
call gather. Doing so allows you to batch up commands that might take a long time. As
an example, calculate the mean and standard deviation of the arrival delay. Use these
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values to construct the upper and lower thresholds for delays that are within 1 standard
deviation of the mean.

m mean(a, 'omitnan');
S std(a, 'omitnan');
one_sigma bounds = [m-s m m+s];

Use gather to calculate one_sigma bounds, and bring the answer into memory.
sigl = gather(one_sigma bounds)
Evaluating tall expression using the Spark Cluster:
- Pass 1 of 1: Completed in 0.95 sec
Evaluation completed in 1.3 sec
sigl =
-23.4572 7.1201  37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several
things at once. Doing so is faster than calling gather separately on each tall array. For
example, calculate the minimum and maximum arrival delay.

[max_delay, min_delay] = gather(max(a),min(a))

max_delay =
1014
min delay =

-64

Note These examples take more time to complete the first time if MATLAB is starting on
the cluster workers.

When using tall arrays on a Spark enabled Hadoop cluster, compute resources from the
Hadoop cluster will be reserved for the lifetime of the mapreducer execution
environment. To clear these resources, you must delete the mapreducer:

delete(gcmr);
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Alternatively, you can change to a different execution environment, for example:

mapreducer(0);

See Also
datastore | gather | mapreducer | parallel.cluster.Hadoop | table | tall

Related Examples

“Big Data Workflow Using Tall Arrays and Datastores” on page 6-58
“Use Tall Arrays on a Parallel Pool” on page 6-61

“Configure a Hadoop Cluster” (MATLAB Parallel Server)

“Tall Arrays” (MATLAB)

“Read and Analyze Hadoop Sequence File” (MATLAB)

More About

“Datastore” (MATLAB)
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Run mapreduce on a Parallel Pool

In this section...

“Start Parallel Pool” on page 6-69

“Compare Parallel mapreduce” on page 6-69

Start Parallel Pool

If you have Parallel Computing Toolbox installed, execution of mapreduce can open a
parallel pool on the cluster specified by your default profile, for use as the execution
environment.

You can set your parallel preferences so that a pool does not automatically open. In this
case, you must explicitly start a pool if you want mapreduce to use it for parallelization of
its work. See “Specify Your Parallel Preferences” on page 6-12.

For example, the following conceptual code starts a pool, and some time later uses that
open pool for the mapreducer configuration.

p = parpool('local',n);
mr = mapreducer(p);
outds = mapreduce(tds,@eanDistMapFun,@eanDistReduceFun,mr)

Note mapreduce can run on any cluster that supports parallel pools. The examples in
this topic use a local cluster, which works for all Parallel Computing Toolbox installations.

Compare Parallel mapreduce

The following example calculates the mean arrival delay from a datastore of airline data.
First it runs mapreduce in the MATLAB client session, then it runs in parallel on a local
cluster. The mapreducer function explicitly controls the execution environment.

Begin by starting a parallel pool on a local cluster.
p = parpool('local',k 4);

Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
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Create two MapReducer objects for specifying the different execution environments for
mapreduce.

inMatlab = mapreducer(0);
inPool = mapreducer(p);

Create and preview the datastore. The data set used in this example is available in
matlabroot/toolbox/matlab/demos.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA"', ...
'SelectedVariableNames', 'ArrDelay', 'ReadSize',1000);
preview(ds)

ArrDelay

8
8
21
13
4
59
3
11

Next, run the mapreduce calculation in the MATLAB client session. The map and reduce
functions are available in matlabroot/toolbox/matlab/demos.

meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inMatlab);

Kok ok ok ok ok oK ok ok koK oK oK K oK oK ok ok K oK oK oK K o oK oK K K K oK K K

* MAPREDUCE PROGRESS *
sk sk sk >k ok 3k sk Sk ok sk sk ok ok 3k sk ok ok 3k sk sk ok sk >k ok ok 3k >k ok K Kk k
Map 0% Reduce 0%
Map 10% Reduce 0%
Map 20% Reduce 0%
Map 30% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%
Map 60% Reduce 0%
Map 70% Reduce 0%
Map 80% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 100%

readall(meanDelay)



See Also

Key Value

'MeanArrivalDelay' [7.1201]

Then, run the calculation on the current parallel pool. Note that the output text indicates
a parallel mapreduce.

meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,inPool);

Parallel mapreduce execution on the parallel pool:
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k ok >k 3k Sk >k 3Kk 3k kook >k ko ok ko kok koko ok k

* MAPREDUCE PROGRESS *

3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k ok >k 3k ok >k 3k 5k 3k kook >k kook >k kok kokok >k
Map 0% Reduce 0%

Map 100% Reduce 50%

Map 100% Reduce 100%
readall(meanDelay)

Key Value

'MeanArrivalDelay' [7.1201]

With this relatively small data set, a performance improvement with the parallel pool is
not likely. This example is to show the mechanism for running mapreduce on a parallel
pool. As the data set grows, or the map and reduce functions themselves become more
computationally intensive, you might expect to see improved performance with the
parallel pool, compared to running mapreduce in the MATLAB client session.

Note When running parallel mapreduce on a cluster, the order of the key-value pairs in
the output is different compared to running mapreduce in MATLAB. If your application
depends on the arrangement of data in the output, you must sort the data according to
your own requirements.

See Also

Functions
datastore | mapreduce | mapreducer
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Related Examples
. “Getting Started with MapReduce” (MATLAB)
. “Run mapreduce on a Hadoop Cluster” on page 6-73

More About
. “MapReduce” (MATLAB)
. “Datastore” (MATLAB)
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Run mapreduce on a Hadoop Cluster

In this section...

“Cluster Preparation” on page 6-73
“Output Format and Order” on page 6-73
“Calculate Mean Delay” on page 6-73

Cluster Preparation

Before you can run mapreduce on a Hadoop cluster, make sure that the cluster and client
machine are properly configured. Consult your system administrator, or see “Configure a
Hadoop Cluster” (MATLAB Parallel Server).

Output Format and Order

When running mapreduce on a Hadoop cluster with binary output (the default), the
resulting KeyValueDatastore points to Hadoop Sequence files, instead of binary MAT-
files as generated by mapreduce in other environments. For more information, see the
"OutputType' argument description on the mapreduce reference page.

When running mapreduce on a Hadoop cluster, the order of the key-value pairs in the
output is different compared to running mapreduce in other environments. If your
application depends on the arrangement of data in the output, you must sort the data
according to your own requirements.

Calculate Mean Delay

This example shows how to modify the MATLAB example for calculating mean airline
delays to run on a Hadoop cluster.

First, you must set environment variables and cluster properties as appropriate for your
specific Hadoop configuration. See your system administrator for the values for these and
other properties necessary for submitting jobs to your cluster.

setenv('HADOOP_HOME', '/path/to/hadoop/install')
cluster = parallel.cluster.Hadoop;
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Note The specified outputFolder must not already exist. The mapreduce output from
a Hadoop cluster cannot overwrite an existing folder.

You will lose your data, if mapreducer is changed or deleted.

Create a MapReducer object to specify that mapreduce should use your Hadoop cluster.
mr = mapreducer(cluster);

Create and preview the datastore. The data set is available in matlabroot/toolbox/
matlab/demos.

ds = datastore('airlinesmall.csv', 'TreatAsMissing', 'NA", ...
'SelectedVariableNames', 'ArrDelay', 'ReadSize',1000);
preview(ds)

ArrDelay

8
8
21
13
4
59
3
11

Next, specify your output folder, output outds and call mapreduce to execute on the
Hadoop cluster specified by mr. The map and reduce functions are available in
matlabroot/toolbox/matlab/demos.

outputFolder = 'hdfs:///home/myuser/outl’;
outds = mapreduce(ds,@myMapperFcn,@myReducerFcn, 'OutputFolder',outputFolder);

meanDelay = mapreduce(ds,@meanArrivalDelayMapper,@meanArrivalDelayReducer,mr, ...

'"OutputFolder',outputFolder)

Parallel mapreduce execution on the Hadoop cluster:
3k 5k 3k 3k 5k 3k 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3k 3k Sk 3k kook >k kook >k kok kokok >k

* MAPREDUCE PROGRESS *
3k 3k 5k >k 3k 5k >k 3k >k 5k >k >k 5k 3k >k 5k 3k >k 5k >k >k 5k >k >k 5k >k >k ok >k >k >k >k
Map 0% Reduce 0%
Map 66% Reduce 0%
Map 100% Reduce 66%



See Also

Map 100% Reduce 100%
meanDelay =
KeyValueDatastore with properties:

Files: {
" .../tmp/alafleur/tpc00621bl 4eef 4abc 8078 646aa916e7d9/part0.seq’
}

ReadSize: 1 key-value pairs
FileType: 'seq'

Read the result.
readall(meanDelay)

Key Value

'MeanArrivalDelay' [7.1201]

Although for demonstration purposes this example uses a local data set, it is likely when
using Hadoop that your data set is stored in an HDFS™ file system. Likewise, you might
be required to store the mapreduce output in HDFS. For details about accessing HDFS in
MATLAB, see “Work with Remote Data” (MATLAB).

See Also

Functions
datastore | mapreduce | mapreducer | parallel.cluster.Hadoop

Related Examples
. “Getting Started with MapReduce” (MATLAB)
. “Run mapreduce on a Parallel Pool” on page 6-69

More About
. “MapReduce” (MATLAB)
. “Datastore” (MATLAB)
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Partition a Datastore in Parallel

Partitioning a datastore in parallel, with a portion of the datastore on each worker in a
parallel pool, can provide benefits in many cases:

* Perform some action on only one part of the whole datastore, or on several defined
parts simultaneously.

» Search for specific values in the data store, with all workers acting simultaneously on
their own partitions.

* Perform a reduction calculation on the workers across all partitions.

This example shows how to use partition to parallelize the reading of data from a
datastore. It uses a small datastore of airline data provided in MATLAB, and finds the
mean of the non-NaN values from its 'ArrDelay' column.

A simple way to calculate the mean is to divide the sum of all the non-NaN values by the
number of non-NaN values. The following code does this for the datastore first in a non-
parallel way. To begin, you define a function to amass the count and sum. If you want to
run this example, copy and save this function in a folder on the MATLAB command search
path.

% Copyright 2015 The MathWorks, Inc.

function [total,count] = sumAndCountArrivalDelay(ds)
total = 0;
count = 0;
while hasdata(ds)
data = read(ds);
total total + sum(data.ArrDelay,1l, 'OmitNaN');
count count + sum(~isnan(data.ArrDelay));

end
end

The following code creates a datastore, calls the function, and calculates the mean
without any parallel execution. The tic and toc functions are used to time the execution,
here and in the later parallel cases.

ds = datastore(repmat({'airlinesmall.csv'},20,1), 'TreatAsMissing', 'NA");
ds.SelectedvVariableNames = 'ArrDelay’;
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reset(ds);
tic
[total,count] = sumAndCountArrivalDelay(ds)
sumtime = toc
mean = total/count

total =

17211680

count =

2417320

sumtime =

11.4450

mean =

7.1201

The partition function allows you to partition the datastore into smaller parts, each
represented as a datastore itself. These smaller datastores work completely
independently of each other, so that you can work with them inside of parallel language
features such as parfor loops and spmd blocks.

The number of partitions in the following code is set by the numpartitions function,
based on the datastore itself (ds) and the parallel pool (gcp) size. This does not
necessarily equal the number of workers in the pool. In this case, the number of loop
iterations is then set to the number of partitions (N).

The following code starts a parallel pool on a local cluster, then partitions the datastore
among workers for iterating over the loop. Again, a separate function is called, which
includes the parfor loop to amass the count and sum totals. Copy and save this function
if you want to run the example.
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% Copyright 2015 The MathWorks, Inc.
function [total, count] = parforSumAndCountArrivalDelay(ds)

N = numpartitions(ds,gcp);

total = 0;

count = 0;

parfor ii = 1:N
% Get partition ii of the datastore.
subds = partition(ds,N,ii);

[localTotal, localCount] = sumAndCountArrivalDelay(subds);
total = total + localTotal;
count = count + localCount;

end

end

Now the MATLAB code calls this new function, so that the counting and summing of the
non-NAN values can occur in parallel loop iterations.

p = parpool('local',k 4);
reset(ds);
tic
[total,count] = parforSumAndCountArrivalDelay(ds)
parfortime = toc
mean = total/count

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 4).

total =

17211680

count =

2417320

parfortime =
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7.2689

mean =

7.1201

Rather than let the software calculate the number of partitions, you can explicitly set this
value, so that the data can be appropriately partitioned to fit your algorithm. For example,
to parallelize data from within an spmd block, you can specify the number of workers
(numlabs) as the number of partitions to use. The following function uses an spmd block
to perform a parallel read, and explicitly sets the number of partitions equal to the
number of workers. To run this example, copy and save the function.

% Copyright 2015 The MathWorks, Inc.

function [total,count] = spmdSumAndCountArrivalDelay(ds)
spmd
subds = partition(ds,numlabs,labindex);
[total,count] = sumAndCountArrivalDelay(subds);

end
total = sum([total{:}1);
count = sum([count{:}]1);
end

Now the MATLAB code calls the function that uses an spmd block.

reset(ds);
tic
[total,count] = spmdSumAndCountArrivalDelay(ds)
spmdtime = toc
mean = total/count

total =

17211680

count =
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2417320

spmdtime =

5.3843

mean =

7.1201

delete(p);

Parallel pool using the 'local' profile is shutting down.

You might get some idea of modest performance improvements by comparing the times
recorded in the variables sumtime, parfortime, and spmdtime. Your results might vary,
as the performance can be affected by the datastore size, parallel pool size, hardware
configuration, and other factors.
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* “Program Independent Jobs” on page 7-2

* “Program Independent Jobs on a Local Cluster” on page 7-3

* “Program Independent Jobs for a Supported Scheduler” on page 7-8
* “Share Code with the Workers” on page 7-16

» “Integration Scripts for Generic Schedulers” on page 7-21
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7-2

The tasks in an independent job do not directly communicate with each other and are
independent. The tasks do not need to run simultaneously, and a worker can run several
tasks of the same job in succession. Typically, all tasks perform the same or similar
functions on different data sets in an embarrassingly parallel configuration.

Some of the details of a job and its tasks can depend on the type of scheduler you are
using:

* “Program Independent Jobs on a Local Cluster” on page 7-3

* “Program Independent Jobs for a Supported Scheduler” on page 7-8

* “Integration Scripts for Generic Schedulers” on page 7-21
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Program Independent Jobs on a Local Cluster

In this section...

“Create and Run Jobs with a Local Cluster” on page 7-3
“Local Cluster Behavior” on page 7-6

Create and Run Jobs with a Local Cluster

Some jobs require more control than the functionality offered by high-level constructs like
spmd and parfor. In such cases, you have to program all the steps for creating and
running the job. Using the local cluster (or local scheduler) on your machine lets you
create and test your jobs without using the resources of your network cluster. Distributing
tasks to workers that are all running on your client machine do not offer any performance
enhancement. Therefore this feature is provided primarily for code development, testing,
and debugging.

Note Workers running in a local cluster on a Microsoft Windows operating system can
display Simulink graphics and the output from certain functions such as uigetfile and
uigetdir. (With other platforms or schedulers, workers cannot display any graphical
output.) This behavior is subject to removal in a future release.

This section details the steps of a typical programming session with Parallel Computing
Toolbox software using a local cluster:

* “Create a Cluster Object” on page 7-4

* “Create a Job” on page 7-4

* “Create Tasks” on page 7-5

* “Submit a Job to the Cluster” on page 7-5

* “Fetch the Job Results” on page 7-6

The objects used by the client session to interact with the cluster are only references to
data in the cluster job storage location, not in the client session. After jobs and tasks are
created, you can close your client session and restart it, and your job still resides in the
storage location. You can find existing jobs using the findJob function or the Jobs
property of the cluster object.
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Create a Cluster Object

You use the parcluster function to create an object in your local MATLAB session
representing the local scheduler.

parallel.defaultClusterProfile('local');
c = parcluster();

Create a Job

You create a job with the createJob function. This statement creates a job in the cluster
job storage location and creates the job object joblin the client session. If you omit the
semicolon at the end of the command, it displays some information about the job.

jobl = createJob(c)

Job
Properties:

ID: 2
Type: Independent
Username: eng864
State: pending
SubmitTime:
StartTime:
Running Duration: 0 days 0h Om 0s

AutoAttachFiles: true
Auto Attached Files: List files
AttachedFiles: {}
AdditionalPaths: {}

Associated Tasks:

Number Pending: 0
Number Running: 0
Number Finished: 0O

[

Task ID of Errors: []

TheState property of the job is pending. This means that the job has not yet been
submitted (queued) for running, so you can now add tasks to it.

The scheduler display now indicates the existence of your job, which is the pending one,
as appears in this partial listing:
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Local Cluster
Associated Jobs

Number Pending:

Number Queued:
Number Running:
Number Finished:

[oNoNoN ]

Create Tasks

After you have created your job, you can create tasks for the job using the createTask
function. Tasks define the functions to be evaluated by the workers during the running of
the job. Often, the tasks of a job are all identical. In this example, five tasks each generate
a 3-by-3 matrix of random numbers.

createTask(jobl, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

The Tasks property of jobl is now a 5-by-1 matrix of task objects.

jobl.Tasks
ID State FinishTime Function Error
1 1 pending @rand
2 2 pending @rand
3 3 pending @rand
4 4 pending @rand
5 5 pending @rand

Submit a Job to the Cluster

To run your job and have its tasks evaluated, you submit the job to the cluster with the
submit function.

submit(jobl)

The local scheduler starts the workers on your machine, and distributes the tasks of jobl
to these workers for evaluation.
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Fetch the Job Results

The results of each task evaluation are stored in the task object OutputArguments
property as a cell array. After waiting for the job to complete, use the function
fetchOutputs to retrieve the results from all the tasks in the job.

wait(jobl)
results = fetchQutputs(jobl);

Display the results from each task.

results{l1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214
0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169
0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987
0.6038 0.0153 0.9318
0.2722 0.7468 0.4660

0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

After the job is complete, you can repeat the commands to examine the updated status of
the cluster, job, and task objects:

C

jobl
jobl.Tasks

Local Cluster Behavior

The local scheduler runs in the MATLAB client session, so you do not have to start any
separate scheduler or MATLAB Job Scheduler process for the local scheduler. When you
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submit a job to the local cluster, the scheduler starts a MATLAB worker for each task in
the job. You can do this for as many workers as allowed by the local profile. If your job has
more tasks than allowed workers, the scheduler waits for one of the current tasks to
complete before starting another MATLAB worker to evaluate the next task. You can
modify the number of allowed workers in the lLocal cluster profile. If not specified, the
default is to run only as many workers as computational cores on the machine.

The local cluster has no interaction with any other scheduler or MATLAB Job Scheduler,
nor with any other workers that can also be running on your client machine under the mjs
service. Multiple MATLAB sessions on your computer can each start its own local
scheduler with its own workers, but these groups do not interact with each other.

When you end your MATLAB client session, its local scheduler and any workers that
happen to be running also stop immediately.
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Program Independent Jobs for a Supported Scheduler

In this section...

“Create and Run Jobs” on page 7-8
“Manage Objects in the Scheduler” on page 7-13

Create and Run Jobs

This section details the steps of a typical programming session with Parallel Computing
Toolbox software using a supported job scheduler on a cluster. Supported schedulers
include the MATLAB Job Scheduler, Platform LSF (Load Sharing Facility), Microsoft
Windows HPC Server (including CCS), PBS Pro, or a TORQUE scheduler.

This section assumes that you have a MATLAB Job Scheduler, LSE, PBS Pro, TORQUE, or
Windows HPC Server (including CCS and HPC Server 2008) scheduler installed and
running on your network. With all of these cluster types, the basic job programming
sequence is the same:

* “Define and Select a Profile” on page 7-8

* “Find a Cluster” on page 7-9

* “Create a Job” on page 7-10

* “Create Tasks” on page 7-11

* “Submit a Job to the Job Queue” on page 7-12
* “Retrieve Job Results” on page 7-12

Note that the objects that the client session uses to interact with the MATLAB Job
Scheduler are only references to data that is actually contained in the MATLAB Job
Scheduler, not in the client session. After jobs and tasks are created, you can close your
client session and restart it, and your job is still stored in the MATLAB Job Scheduler. You
can find existing jobs using the findJob function or the Jobs property of the MATLAB
Job Scheduler cluster object.

Define and Select a Profile

A cluster profile identifies the type of cluster to use and its specific properties. In a
profile, you define how many workers a job can access, where the job data is stored,
where MATLAB is accessed and many other cluster properties. The exact properties are
determined by the type of cluster.
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The step in this section all assume the profile with the name MyProfile identifies the
cluster you want to use, with all necessary property settings. With the proper use of a
profile, the rest of the programming is the same, regardless of cluster type. After you
define or import your profile, you can set it as the default profile in the Profile Manager
GUI, or with the command:

parallel.defaultClusterProfile('MyProfile")

A few notes regarding different cluster types and their properties:

Notes In a shared file system, all nodes require access to the folder specified in the
cluster object's JobStoragelLocation property.

Because Windows HPC Server requires a shared file system, all nodes require access to
the folder specified in the cluster object's JobStoragelLocation property.

In a shared file system, MATLAB clients on many computers can access the same job data
on the network. Properties of a particular job or task should be set from only one client
computer at a time.

When you use an LSF scheduler in a nonshared file system, the scheduler might report
that a job is in the finished state even though the LSF scheduler might not yet have
completed transferring the job’s files.

Find a Cluster

You use the parcluster function to identify a cluster and to create an object
representing the cluster in your local MATLAB session.

To find a specific cluster, user the cluster profile to match the properties of the cluster you
want to use. In this example, MyProfile is the name of the profile that defines the
specific cluster.

c = parcluster('MyProfile');

MJS Cluster

Properties
Name: my mjs
Profile: MyProfile
Modified: false
Host: node345
Username: mylogin
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NumWorkers: 1
NumBusyWorkers: 0
NumIdleWorkers: 1

JobStoragelLocation: Database on node345
ClusterMatlabRoot: C:\apps\matlab
OperatingSystem: windows
AllHostAddresses: 0:0:0:0
SecuritylLevel: 0 (No security)
HasSecureCommunication: false

Associated Jobs

Number Pending:

Number Queued:
Number Running:
Number Finished:

[cNoNoNo)

Create a Job

You create a job with the createJob function. Although this command executes in the
client session, it actually creates the job on the cluster, ¢, and creates a job object, jobl,
in the client session.

jobl = createJob(c)
Job

Properties:
ID: 1
Type: Independent
Username: mylogin
State: pending
SubmitTime:
StartTime:
Running Duration: 0 days Oh Om 0Os

AutoAttachFiles: true
Auto Attached Files: List files
AttachedFiles: {}
AdditionalPaths: {}

Associated Tasks:

Number Pending:
Number Running:
Number Finished:
Task ID of Errors:

Il oNoNO]
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Note that the job’s State property is pending. This means the job has not been queued
for running yet, so you can now add tasks to it.

The cluster’s display now includes one pending job, as shown in this partial listing:
C

Associated Jobs

Number Pending:

Number Queued:
Number Running:
Number Finished:

[ocNoNoN ]

You can transfer files to the worker by using the AttachedFiles property of the job
object. For details, see “Share Code with the Workers” on page 7-16.

Create Tasks

After you have created your job, you can create tasks for the job using the createTask
function. Tasks define the functions to be evaluated by the workers during the running of
the job. Often, the tasks of a job are all identical. In this example, each task will generate
a 3-by-3 matrix of random numbers.

createTask(jobl, @rand, 1, });
createTask(jobl, @rand, 1, });
createTask(jobl, @rand, 1, {3,3});
createTask(jobl, @rand, 1, });
createTask(jobl, @rand, 1, });

The Tasks property of jobl is now a 5-by-1 matrix of task objects.

jobl.Tasks
ID State FinishTime Function Error
1 1 pending @rand
2 2 pending @rand
3 3 pending @rand
4 4 pending @rand
5 5 pending @rand

Alternatively, you can create the five tasks with one call to createTask by providing a
cell array of five cell arrays defining the input arguments to each task.
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T = createTask(jobl, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});
In this case, T is a 5-by-1 matrix of task objects.
Submit a Job to the Job Queue

To run your job and have its tasks evaluated, you submit the job to the job queue with the
submit function.

submit(jobl)
The job manager distributes the tasks of jobl to its registered workers for evaluation.

Each worker performs the following steps for task evaluation:

1 Receive AttachedFiles and AdditionalPaths from the job. Place files and
modify the path accordingly.

2  Run the jobStartup function the first time evaluating a task for this job. You can
specify this function in AttachedFiles or AdditionalPaths. When using a
MATLAB Job Scheduler, if the same worker evaluates subsequent tasks for this job,
jobStartup does not run between tasks.

3 Run the taskStartup function. You can specify this function in AttachedFiles or
AdditionalPaths. This runs before every task evaluation that the worker performs,
so it could occur multiple times on a worker for each job.

4  If the worker is part of forming a new parallel pool, run the poolStartup function.
(This occurs when executing parpool or when running other types of jobs that form
and use a parallel pool, such as batch.)

Receive the task function and arguments for evaluation.

Evaluate the task function, placing the result in the task’s OutputArguments
property. Any error information goes in the task’s Error property.

7 Run the taskFinish function.
Retrieve Job Results

The results of each task's evaluation are stored in that task object’s OutputArguments
property as a cell array. Use the function fetchOutputs to retrieve the results from all
the tasks in the job.

wait(jobl)
results = fetchOutputs(jobl);
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Display the results from each task.

results{l:5}

0.
0.
0.

[oNoNO] [oNoNO] [oNoNO]

[oNoNO]

9501
2311
6068

.4447
.6154
.7919

.4103
.8936
.0579

.6038
.2722
.1988

. 8462
.5252
.2026

[cNoNO] [ocNoNO] [ocNoNO] [ocNoNO]

[oNoNO]

.4860
.8913
.7621

.9218
.7382
.1763

.3529
.8132
.0099

.0153
.7468
.4451

.6721
.8381
.0196

[cNoNO] [cNoNO] [cNoNO] [cNoNO]

[ocNoNO]

.4565
.0185
.8214

.4057
.9355
.9169

.1389
.2028
.1987

.9318
.4660
.4186

.6813
.3795
.8318

Manage Objects in the Scheduler

Because all the data of jobs and tasks resides in the cluster job storage location, these
objects continue to exist even if the client session that created them has ended. The
following sections describe how to access these objects and how to permanently remove

them:

* “What Happens When the Client Session Ends” on page 7-13

* “Recover Objects” on page 7-14
* “Reset Callback Properties (MATLAB Job Scheduler Only)” on page 7-14
* “Remove Objects Permanently” on page 7-14

What Happens When the Client Session Ends

When you close the client session of Parallel Computing Toolbox software, all of the
objects in the workspace are cleared. However, the objects in MATLAB Parallel Server
software or other cluster resources remain in place. When the client session ends, only
the local reference objects are lost, not the actual job and task data in the cluster.
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Therefore, if you have submitted your job to the cluster job queue for execution, you can
quit your client session of MATLAB, and the job will be executed by the cluster. You can
retrieve the job results later in another client session.

Recover Objects

A client session of Parallel Computing Toolbox software can access any of the objects in
MATLAB Parallel Server software, whether the current client session or another client
session created these objects.

You create cluster objects in the client session by using the parcluster function.

¢ = parcluster('MyProfile');

When you have access to the cluster by the object ¢, you can create objects that reference
all those job contained in that cluster. The jobs are accessible in cluster object’s Jobs
property, which is an array of job objects:

all jobs = c.Jobs
You can index through the array all jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a cluster for any jobs or a
particular job identified by any of its properties, such as its State.

all jobs = findJob(c);
finished jobs = findJob(c, 'State','finished')

This command returns an array of job objects that reference all finished jobs on the
cluster c.

Reset Callback Properties (MATLAB Job Scheduler Only)

When restarting a client session, you lose the settings of any callback properties (for
example, the FinishedFcn property) on jobs or tasks. These properties are commonly
used to get notifications in the client session of state changes in their objects. When you
create objects in a new client session that reference existing jobs or tasks, you must reset
these callback properties if you intend to use them.

Remove Objects Permanently

Jobs in the cluster continue to exist even after they are finished, and after the MATLAB
Job Scheduler is stopped and restarted. The ways to permanently remove jobs from the
cluster are explained in the following sections:
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» “Delete Selected Objects” on page 7-15
» “Start a MATLAB Job Scheduler from a Clean State” on page 7-15

Delete Selected Objects

From the command line in the MATLAB client session, you can call the delete function
for any job or task object. If you delete a job, you also remove all tasks contained in that
job.

For example, find and delete all finished jobs in your cluster that belong to the user joep.

c = parcluster('MyProfile')

finished jobs = findJob(c, 'State', 'finished', 'Username', 'joep")
delete(finished jobs)

clear finished jobs

The delete function permanently removes these jobs from the cluster. The clear
function removes the object references from the local MATLAB workspace.

Start a MATLAB Job Scheduler from a Clean State

When a MATLAB Job Scheduler starts, by default it starts so that it resumes its former
session with all jobs intact. Alternatively, a MATLAB Job Scheduler can start from a clean
state with all its former history deleted. Starting from a clean state permanently removes
all job and task data from the MATLAB Job Scheduler of the specified name on a
particular host.

As a network administration feature, the - clean flag of the startjobmanager script is
described in “Start in a Clean State” (MATLAB Parallel Server) in the MATLAB Parallel
Server System Administrator's Guide.
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Because the tasks of a job are evaluated on different machines, each machine must have
access to all the files needed to evaluate its tasks. The basic mechanisms for sharing code
are explained in the following sections:

In this section...

“Workers Access Files Directly” on page 7-16
“Pass Data to and from Worker Sessions” on page 7-17
“Pass MATLAB Code for Startup and Finish” on page 7-19

Workers Access Files Directly

If the workers all have access to the same drives on the network, they can access the
necessary files that reside on these shared resources. This is the preferred method for
sharing data, as it minimizes network traffic.

You must define each worker session’s search path so that it looks for files in the right
places. You can define the path:

* By using the job’s AdditionalPaths property. This is the preferred method for
setting the path, because it is specific to the job.

AdditionalPaths identifies folders to be added to the top of the command search
path of worker sessions for this job. If you also specify AttachedFiles, the
AttachedFiles are above AdditionalPaths on the workers’ path.

When you specify AdditionalPaths at the time of creating a job, the settings are
combined with those specified in the applicable cluster profile. Setting
AdditionalPaths on a job object after it is created does not combine the new
setting with the profile settings, but overwrites existing settings for that job.

AdditionalPaths is empty by default. For a mixed-platform environment, the
character vectors can specify both UNIX and Microsoft Windows style paths; those
setting that are not appropriate or not found for a particular machine generate
warnings and are ignored.

This example sets the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository /central/funcs and the department
archive /deptl/funcs, which each also have a Windows UNC path.
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c = parcluster(); % Use default

jobl = createlob(c);

ap = {'/central/funcs', '/deptl/funcs', ..
"\\OurDomain\central\funcs', '\\OurDomain\deptl\funcs'};

jobl.AdditionalPaths = ap;

* By putting the path command in any of the appropriate startup files for the worker:

* matlabroot\toolbox\local\startup.m
* matlabroot\toolbox\distcomp\user\jobStartup.m
* matlabroot\toolbox\distcomp\user\taskStartup.m

Access to these files can be passed to the worker by the job’s AttachedFiles or
AdditionalPaths property. Otherwise, the version of each of these files that is used
is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based on the user
name. You can set the user name with which the MATLAB Job Scheduler and worker
services of MATLAB Parallel Server software run by setting the MJSUSER value in the
mjs_def file before starting the services. For Microsoft Windows operating systems,
there is also MJSPASS for providing the account password for the specified user. For an
explanation of service default settings and the mjs_def file, see “Define Script Defaults”
(MATLAB Parallel Server) in the MATLAB Parallel Server System Administrator's Guide.

Pass Data to and from Worker Sessions

A number of properties on task and job objects are designed for passing code or data
from client to scheduler to worker, and back. This information could include MATLAB
code necessary for task evaluation, or the input data for processing or output data
resulting from task evaluation. The following properties facilitate this communication:

* InputArguments — This property of each task contains the input data you specified
when creating the task. This data gets passed into the function when the worker
performs its evaluation.

* OutputArguments — This property of each task contains the results of the function’s
evaluation.

* JobData — This property of the job object contains data that gets sent to every
worker that evaluates tasks for that job. This property works efficiently because the
data is passed to a worker only once per job, saving time if that worker is evaluating
more than one task for the job. (Note: Do not confuse this property with the UserData
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property on any objects in the MATLAB client. Information in UserData is available
only in the client, and is not available to the scheduler or workers.)

AttachedFiles — This property of the job object is a cell array in which you
manually specify all the folders and files that get sent to the workers. On the worker,
the files are installed and the entries specified in the property are added to the search
path of the worker session.

AttachedFiles contains a list of folders and files that the worker need to access for
evaluating a job’s tasks. The value of the property (empty by default) is defined in the
cluster profile or in the client session. You set the value for the property as a cell array
of character vectors. Each character vector is an absolute or relative pathname to a
folder or file. (Note: If these files or folders change while they are being transferred,
or if any of the folders are empty, a failure or error can result. If you specify a
pathname that does not exist, an error is generated.)

The first time a worker evaluates a task for a particular job, the scheduler passes to
the worker the files and folders in the AttachedFiles property. On the worker
machine, a folder structure is created that is exactly the same as that accessed on the
client machine where the property was set. Those entries listed in the property value
are added to the top of the command search path in the worker session. (Subfolders of
the entries are not added to the path, even though they are included in the folder
structure.) To find out where the files are placed on the worker machine, use the
function getAttachedFilesFolder in code that runs on the worker.

When the worker runs subsequent tasks for the same job, it uses the folder structure
already set up by the job’s AttachedFiles property for the first task it ran for that
job.

When you specify AttachedFiles at the time of creating a job, the settings are
combined with those specified in the applicable profile. Setting AttachedFiles on a
job object after it is created does not combine the new setting with the profile settings,
but overwrites the existing settings for that job.

The transfer of AttachedFiles occurs for each worker running a task for that
particular job on a machine, regardless of how many workers run on that machine.
Normally, the attached files are deleted from the worker machine when the job is
completed, or when the next job begins.

AutoAttachFiles — This property of the job object uses a logical value to specify
that you want MATLAB to perform an analysis on the task functions in the job and on
manually attached files to determine which code files are necessary for the workers,
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and to automatically send those files to the workers. You can set this property value in
a cluster profile using the Profile Manager, or you can set it programmatically on a job
object at the command line.

C parcluster();
j = createlob(c);
j.AutoAttachFiles = true;

The supported code file formats for automatic attachment are MATLAB files (.m
extension), P-code files (. p), and MEX-files (.mex). Note that AutoAttachFiles does
not include data files for your job; use the AttachedFiles property to explicitly
transfer these files to the workers.

Use listAutoAttachedFiles to get a listing of the code files that are automatically
attached to a job.

If the AutoAttachFiles setting is true for the cluster profile used when starting a
parallel pool, MATLAB performs an analysis on spmd blocks, parfor-loops, and other
attached files to determine what other code files are necessary for execution, then
automatically attaches those files to the parallel pool so that the code is available to
the workers.

Note There is a default maximum amount of data that can be sent in a single call for
setting properties. This limit applies to the OutputArguments property as well as to data
passed into a job as input arguments or AttachedFiles. If the limit is exceeded, you get
an error message. For more information about this data transfer size limit, see “Attached
Files Size Limitations” on page 6-53.

Pass MATLAB Code for Startup and Finish

As a session of MATLAB, a worker session executes its startup.m file each time it starts.
You can place the startup.m file in any folder on the worker’s MATLAB search path,
such as toolbox/distcomp/user.

These additional files can initialize and clean up a worker session as it begins or
completes evaluations of tasks for a job:

* jobStartup.m automatically executes on a worker when the worker runs its first task
of a job.
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* taskStartup.m automatically executes on a worker each time the worker begins
evaluation of a task.

* poolStartup.mautomatically executes on a worker each time the worker is included
in a newly started parallel pool.

+ taskFinish.m automatically executes on a worker each time the worker completes
evaluation of a task.

Empty versions of these files are provided in the folder:
matlabroot/toolbox/distcomp/user

You can edit these files to include whatever MATLAB code you want the worker to execute
at the indicated times.

Alternatively, you can create your own versions of these files and pass them to the job as
part of the AttachedFiles property, or include the path names to their locations in the
AdditionalPaths property.

The worker gives precedence to the versions provided in the AttachedFiles property,
then to those pointed to in the AdditionalPaths property. If any of these files is not
included in these properties, the worker uses the version of the file in the toolbox/
distcomp/user folder of the worker's MATLAB installation.
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Integration Scripts for Generic Schedulers

In this section...

“Sample Integration Scripts” on page 7-22

“Writing Custom Integration Scripts” on page 7-23
“Adding User Customization” on page 7-31

“Managing Jobs with Generic Scheduler” on page 7-33
“Submitting from a Remote Host” on page 7-34
“Submitting without a Shared File System” on page 7-35

The generic scheduler interface provides complete flexibility to configure the interaction
of the MATLAB client, MATLAB workers, and a third-party scheduler. The integration
scripts define how MATLAB interacts with your setup.

The following table lists the supported integration script functions and the stage at which
they are evaluated:

File Name Stage

independentSubmitFcn.m Submitting an independent job

communicatingSubmitFcn.m Submitting a communicating job

getJobStateFcn.m Querying the state of a job

canceJobFcn.m Canceling a job

cancelTaskFcn.m Canceling a task

deleteJobFcn.m Deleting a job

deleteTaskFcn.m Deleting a task

postConstructFcn.m After creating a
parallel.cluster.Generic instance

These integration scripts are evaluated only if they have the expected file name and are
located in the folder specified by the IntegrationScriptsLocation property of the
cluster. For more information about how to configure a generic cluster profile, see
“Configure Using the Generic Scheduler Interface” (MATLAB Parallel Server).
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Note The independentSubmitFcn.m must exist to submit an independent job, and the
communicatingSubmitFcn.m must exist to submit a communicating job.

Sample Integration Scripts

To support usage of the generic scheduler interface, integration scripts are available for
the following third-party schedulers:

» IBM Platform LSF
* Grid Engine family
* PBS family

+ SLURM

Each installer provides scripts for three possible submission modes:

* Shared - The client can submit directly to the scheduler, and the client and the cluster
nodes (or machines) have a shared file system.

* Remote - The client and cluster nodes have a shared file system, but the client
machine cannot submit directly to the scheduler, such as when the client utilities of
the scheduler are not installed. This mode uses the ssh protocol to submit commands
to the scheduler using a remote host.

* Nonshared - The client and cluster nodes do not have a shared file system. This mode
uses the ssh protocol to submit commands to the scheduler using a remote host, and
it uses the sftp protocol to copy job and task files to the cluster file system.

Each submission mode has its own subfolder within the installation folder. This subfolder
contains a README file that provides specific instructions on how to use the scripts.
Before using the scripts, decide which submission mode describes your network setup.

To run the installer, download the appropriate support package for your scheduler, and
open it in your MATLAB client. The installer includes a wizard to guide you through
creating a cluster profile for your cluster configuration.

If your scheduler or cluster configuration is not supported by one of the support
packages, it is recommended that you modify the scripts of one of these packages. For
more information on how to write a set of integration scripts for generic schedulers, see
“Writing Custom Integration Scripts” on page 7-23.

7-22


https://www.mathworks.com/matlabcentral/fileexchange/52817
https://www.mathworks.com/matlabcentral/fileexchange/52816
https://www.mathworks.com/matlabcentral/fileexchange/52815
https://www.mathworks.com/matlabcentral/fileexchange/52807

Integration Scripts for Generic Schedulers

Wrapper Scripts

The sample integration scripts use wrapper scripts to simplify the implementation of
independentSubmitFcn.mand communicatingSubmitFcn.m. These scripts are not
required, however, using them is a good practice to make your code more readable. This
table describes these scripts:

File name Description

independentJobWrapper.sh Used in independentSubmitFcn.m to
embed a call to the MATLAB executable
with the appropriate arguments. It uses
environment variables for the location of
the executable and its arguments. For an
example of its use, see “Sample script for a
SLURM scheduler” on page 7-25.

communicatingJobWrapper.sh Used in communicatingSubmitFcn.m to
distribute a communicating job in your
cluster. This script implements the steps in
“Submit scheduler job to launch MPI
process” on page 7-27. For an example of
its use, see “Sample script for a SLURM
scheduler” on page 7-28.

Writing Custom Integration Scripts

Note When writing your own integration scripts, it is a good practice to start by
modifying one of the sample integration scripts that most closely matches your setup (see
“Sample Integration Scripts” on page 7-22).

independentSubmitFcn

When you submit an independent job to a generic cluster, the
independentSubmitFcn.m function executes in the MATLAB client session.

The declaration line of this function must be:

function independentSubmitFcn(cluster, job,environmentProperties)
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Each task in a MATLAB independent job corresponds to a single job on your scheduler.
The purpose of this function is to submit N jobs to your third-party scheduler, where N is
the number of tasks in the independent job. Each of these jobs must:

1  Set the five environment variables required by the worker MATLAB to identify the

individual task to run. For more information, see “Configure the worker environment

on page 7-24.

”

2  Call the appropriate MATLAB executable to start the MATLAB worker and run the
task. For more information, see “Submit scheduler jobs to run MATLAB workers” on

page 7-25.

Configure the worker environment

This table identifies the five environment variables and values that must be set on the

worker MATLAB to run an individual task:

Environment Variable Name

Environment Variable Value

MDCE_DECODE_FUNCTION

'parallel.cluster.generic.indepen
dentDecodeFcn'

MDCE_STORAGE_CONSTRUCTOR

environmentProperties.StorageCons
tructor

MDCE_ STORAGE LOCATION

» If you have a shared file system between
the client and cluster nodes, use
environmentProperties.StoragelLo
cation.

* Ifyou do not have a shared file system
between the client and cluster nodes,
select a folder visible to all cluster
nodes. For instructions on copying job
and task files between client and cluster
nodes, see “Submitting without a
Shared File System” on page 7-35.

MDCE_JOB_LOCATION

environmentProperties.JobLocation

MDCE_TASK_LOCATION

environmentProperties.TaskLocatio
n{n} for the nth task

Many schedulers support copying the client environment as part of the submission
command. If so, you can set the previous environment variables in the client, so the
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scheduler can copy them to the worker environment. If not, you must modify your
submission command to forward these variables.

Submit scheduler jobs to run MATLAB workers

Once the five required parameters for a given job and task are defined on a worker, the
task is run by calling the MATLAB executable with suitable arguments. The MATLAB
executable to call is defined in environmentProperties.MatlabExecutable. The
arguments to pass are defined in environmentProperties.MatlabArguments.

Note If you cannot submit directly to your scheduler from the client machine, see
“Submitting from a Remote Host” on page 7-34 for instructions on how to submit using
ssh.

Sample script for a SLURM scheduler

This script shows a basic submit function for a SLURM scheduler with a shared file
system. For a more complete example, see the sample support scripts in “Sample
Integration Scripts” on page 7-22.

function independentSubmitFcn(cluster, job,environmentProperties)
% Specify the required environment variables.
setenv('MDCE_DECODE_FUNCTION', 'parallel.cluster.generic.independentDecodeFcn');
setenv('MDCE_STORAGE CONSTRUCTOR', environmentProperties.StorageConstructor);
setenv('MDCE STORAGE LOCATION', environmentProperties.StoragelLocation);
setenv('MDCE_JOB LOCATION', environmentProperties.JobLocation);

% Specify the MATLAB executable and arguments to run on the worker.
% These are used in the independentJobWrapper.sh script.
setenv('MDCE_MATLAB EXE', environmentProperties.MatlabExecutable);
setenv('MDCE MATLAB ARGS', environmentProperties.MatlabArguments);

for ii = l:environmentProperties.NumberOfTasks
% Specify the environment variable required to identify which task to run.
setenv('MDCE _TASK LOCATION', environmentProperties.TaskLocations{ii});
% Specify the command to submit the job to the SLURM scheduler.
% SLURM will automatically copy environment variables to workers.
commandToRun = 'sbatch --ntasks=1 independentJobWrapper.sh';
[cmdFailed, cmdOut] = system(commandToRun);

end

end
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The previous example submits a simple bash script, independentJobWrapper.sh, to
the scheduler. The independentJobWrapper.sh script embeds the MATLAB executable
and arguments using environment variables:

#!/bin/sh

# MDCE_MATLAB EXE - the MATLAB executable to use
# MDCE_MATLAB ARGS - the MATLAB args to use
exec "${MDCE MATLAB EXE}" ${MDCE MATLAB ARGS}

communicatingSubmitFcn

When you submit a communicating job to a generic cluster, the
communicatingSubmitFcn.m function executes in the MATLAB client session.

The declaration line of this function must be:
function communicatingSubmitFcn(cluster, job,environmentProperties)
The purpose of this function is to submit a single job to your scheduler. This job must:

1  Set the four environment variables required by the MATLAB workers to identify the
job to run. For more information, see “Configure the worker environment” on page 7-
26.

2 Call MPI to distribute your job to N MATLAB workers. N corresponds to the maximum
value specified in the NumWorkersRange property of the MATLAB job. For more
information, see “Submit scheduler job to launch MPI process” on page 7-27.

Configure the worker environment

This table identifies the four environment variables and values that must be set on the
worker MATLAB to run a task of a communicating job:

Environment Variable Name Environment Variable Value

MDCE DECODE FUNCTION ‘parallel.cluster.generic.communi
catingDecodeFcn'

MDCE_STORAGE_CONSTRUCTOR environmentProperties.StorageCons
tructor
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MDCE_STORAGE LOCATION * Ifyou have a shared file system between
the client and cluster nodes, use
environmentProperties.StoragelLo
cation.

* If you do not have a shared file system
between the client and cluster nodes,
select a folder which exists on all cluster
nodes. For instructions on copying job
and task files between client and cluster
nodes, see “Submitting without a
Shared File System” on page 7-35.

MDCE JOB LOCATION environmentProperties.JobLocation

Many schedulers support copying the client environment as part of the submission
command. If so, you can set the previous environment variables in the client, so the
scheduler can copy them to the worker environment. If not, you must modify your
submission command to forward these variables.

Submit scheduler job to launch MPI process

After you define the four required parameters for a given job, run your job by launching N
worker MATLAB processes using mpiexec. mpiexec is software shipped with the Parallel
Computing Toolbox that implements the Message Passing Interface (MPI) standard to
allow communication between the worker MATLAB processes. For more information
about mpiexec, see the MPICH home page.

To run your job, you must submit a job to your scheduler, which executes the following
steps. Note that matlabroot refers to the MATLAB installation location on your worker
nodes.

1 Request N processes from the scheduler. N corresponds to the maximum value
specified in the NumWorkersRange property of the MATLAB job.

2 Call mpiexec to start worker MATLAB processes. The number of worker MATLAB
processes to start on each host should match the number of processes allocated by
your scheduler. The mpiexec executable is located at matlabroot/bin/
mw_mpiexec.

The mpiexec command automatically forwards environment variables to the
launched processes. Therefore, ensure the environment variables listed in “Configure
the worker environment” on page 7-26 are set before running mpiexec.
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To learn more about options for mpiexec, see Using the Hydra Process Manager.

Note For a complete example of the previous steps, see the
communicatingJobWrapper. sh script provided with any of the sample integration
scripts in “Sample Integration Scripts” on page 7-22. Use this script as a starting point if
you need to write your own script.

Sample script for a SLURM scheduler

The following script shows a basic submit function for a SLURM scheduler with a shared
file system.

The submitted job is contained in a bash script, communicatingJobWrapper.sh. This
script implements the relevant steps in “Submit scheduler job to launch MPI process” on
page 7-27 for a SLURM scheduler. For a more complete example, see the sample support
scripts in “Sample Integration Scripts” on page 7-22.

function communicatingSubmitFcn(cluster,job,environmentProperties)
% Specify the four required environment variables.
setenv('MDCE_DECODE_FUNCTION', 'parallel.cluster.generic.communicatingDecodeFcn');
setenv('MDCE_STORAGE CONSTRUCTOR', environmentProperties.StorageConstructor);
setenv('MDCE_STORAGE LOCATION', environmentProperties.StoragelLocation);
setenv('MDCE_JOB LOCATION', environmentProperties.JobLocation);

% Specify the MATLAB executable and arguments to run on the worker.
% Specify the location of the MATLAB install on the cluster nodes.
% These are used in the communicatingJobWrapper.sh script.
setenv('MDCE MATLAB EXE', environmentProperties.MatlabExecutable);
setenv('MDCE MATLAB ARGS', environmentProperties.MatlabArguments);
setenv('MDCE CMR', cluster.ClusterMatlabRoot);

numberOfTasks = environmentProperties.NumberOfTasks;

% Specify the command to submit a job to the SLURM scheduler which
% requests as many processes as tasks in the job.
% SLURM will automatically copy environment variables to workers.
commandToRun = sprintf('sbatch --ntasks=%d communicatingJobWrapper.sh', numberOfTa:
[cmdFailed, cmdOut] = system(commandToRun);

end
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getjobStateFcn

When you query the state of a job created with a generic cluster, the getJobStateFcn.m
function executes in the MATLAB client session. The declaration line of this function must
be:

function state = getJobStateFcn(cluster,job,state)

When using a third-party scheduler, it is possible that the scheduler can have more up-to-
date information about your jobs than what is available to the toolbox from the local job
storage location. This situation is especially true if using a nonshared file system, where
the remote file system could be slow in propagating large data files back to your local
data location.

To retrieve that information from the scheduler, add a function called
getJobStateFcn.m to the IntegrationScriptsLocation of your cluster.

The state passed into this function is the state derived from the local job storage. The
body of this function can then query the scheduler to determine a more accurate state for
the job and return it in place of the stored state. The function you write for this purpose
must return a valid value for the state of a job object. Allowed values are ‘pending’,
‘queued’, ‘running’, ‘finished’, or ‘failed’.

For instructions on pairing MATLAB tasks with their corresponding scheduler job ID, see
“Managing Jobs with Generic Scheduler” on page 7-33.

canceljobFcn

When you cancel a jo